原方程可化为:1/[(x+1)(x+2)] + 1/[(x+2)(x+3)] +1/[(x+3)(x+4)] - 1/(x+4)=0裂项得:1/(x+1) - 1/(x+2) + 1/(x+2) - 1/(x+3) + 1/(x+3) - 1/(x+4) - 1/(x+4)=0即:1/(x+1) - 2/(x+4)=01/(x+1) = 2/(x+4)x+4=2x+2解得:x=2经检验,原方程的解为:x=2