求解答,微积分∫arcsinxdx要详细步骤

2025-01-20 23:54:05
推荐回答(5个)
回答1:

∫arcsinxdx= xarcsinx + √(1-x²) +C。C为常数。

用分部积分法:∫ u dv = uv - ∫ v du

∫ arcsinx dx

= x arcsinx - ∫ x darcsinx

= xarcsinx - ∫ x / √(1 - x²) dx

= xarcsinx + 1/2 ∫ 1/√(1-x²) d(1-x²)

= xarcsinx + √(1-x²) +C

扩展资料:

求不定积分的方法:

第一类换元其实就是一种拼凑,利用f'(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果。(用换元法说,就是把f(x)换为t,再换回来)。

分部积分,就那固定的几种类型,无非就是三角函数乘上x,或者指数函数、对数函数乘上一个x这类的,记忆方法是把其中一部分利用上面提到的f‘(x)dx=df(x)变形,再用∫xdf(x)=f(x)x-∫f(x)dx这样的公式,当然x可以换成其他g(x)。

常用积分公式:

1)∫0dx=c 

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c

9)∫1/(sinx)^2dx=-cotx+c

10)∫1/√(1-x^2) dx=arcsinx+c

回答2:

令a=1即可,详情如图所示

回答3:

令U=arcsinx U'=1/√(1-x^2)dx
V'=dx V=x
∫arcsinxdx=UV-∫VU'
=x*arcsinx-∫x/√(1-x^2)dx
=x*arcsinx-0.5∫1/√(1-x^2)dx^2
=x*arcsinx+0.5∫1/√(1-x^2)d(1-x^2)
=x*arcsinx+√(1-x^2)

回答4:

原式=xarcsinx-∫xdarcsinx
=xarcsinx-∫xdx╱√(1-x∧2)
=xarcsinx+(1-x∧2)∧1╱2

回答5:

微积分∫arcsinxdx要详细步骤,这个详细步骤的话,应该先把这个英文翻译成中文,每款微软它都会有一个操作说明,按照说明一步一步这样操作,应该就能解答这个问题。