一个三元函数u=f(x,y,z)在一个约束条件g(x,y,z)=0下的条件极值问题有两种解法,一种就是像你做的,通过约束条件确定隐函数z=h(x,y),代入得u=f(x,y,h(x,y)),成为一个二元函数的普通极值问题,这种方法要求通过方程确定的隐函数z=h(x,y)要能够写成显函数,也就是能把z用x,y表示,否则就像你做的这样,很麻烦而且容易弄错了,因为既要用复合函数求导又有隐函数求导,你最后就把自己弄糊涂了,要这样做,应该把z解出来,代入原目标函数,真正化成二元函数。第二种方法就是解答上的拉格朗日乘数法,很明显这题不适合第一种方法。