什么是内插法?能举个简单的例子说明一下吗?

2024-11-21 21:29:44
推荐回答(5个)
回答1:

根据未知函数f(x)在某区间内若干点的函数值,作出在该若干点的函数值与f(x)值相等的特定函数来近似原函数f(x),进而可用此特定函数算出该区间内其他各点的原函数f(x)的近似值,这种方法称为内插法。

内插法举例说明:

假设与A1对应的数据是B1,与A2对应的数据是B2,现在已知与A对应的数据是B,A介于A1和A2之间,则可以按照:

(A1-A)/(A1-A2)=(B1-B)/(B1-B2)计算得出A的数值,其中A1、A2、B1、B2、B都是已知数据。根本不必记忆教材中的公式,也没有任何规定必须β1>β2。验证如下:根据(A1-A)/(A1-A2)=(B1-B)/(B1-B2)可知:

(A1-A)=(B1-B)/(B1-B2)×(A1-A2)A=A1-(B1-B)/(B1-B2)×(A1-A2)=A1+(B1-B)/(B1-B2)×(A2-A1)。

内插法的原理

数学内插法即“直线插入法”。其原理是,若A(i1,b1),B(i2,b2)为两点,则点P(i,b)在上述两点确定的直线上。而工程上常用的为i在i1,i2之间,从而P在点A、B之间,故称“直线内插法”。

数学内插法说明点P反映的变量遵循直线AB反映的线性关系。上述公式易得。A、B、P三点共线,则(b-b1)/(i-i1)=(b2-b1)/(i2-i1)=直线斜率,变换即得所求。

回答2:

内插法,又称插值法。根据未知函数f(x)在某区间内若干点的函数值,作出在该若干点的函数值与f(x)值相等的特定函数来近似原函数f(x),进而可用此特定函数算出该区间内其他各点的原函数f(x)的近似值,这种方法,称为内插法。按特定函数的性质分,有线性内插、非线性内插等;按引数(自变量)个数分,有单内插、双内插和三内插等。

举例:

500小时处在480小时和540小时两个数字之间,而480对应的修理费为493,540对应的为544,那么根据内插法,500小时对应的数字为x

就可以列方程为:(500-480)/(540-480)=(x-493)/(544-493),解这个方程,即可得出500小时对应的修理费。

将上面的式子变形,得出X=493+(500-480)/(540-480)*(544-493)。

拓展资料

(1)“内插法”的原理是根据等比关系建立一个方程,然后解方程计算得出所要求的数据。

例如:假设与A1对应的数据是B1,与A2对应的数据是B2,A介于A1和A2之间,已知与A对应的数据是B,则可以按照(A1-A)/(A1-A2)=(B1-B)/(B1-B2)计算得出A的数值。

(2)仔细观察一下这个方程会看出一个特点,即相对应的数据在等式两方的位置相同。例如:A1位于等式左方表达式的分子和分母的左侧,与其对应的数字B1位于等式右方的表达式的分子和分母的左侧。

(3)还需要注意的一个问题是:如果对A1和A2的数值进行交换,则必须同时对B1和B2的数值也交换,否则,计算得出的结果一定不正确。

内插法的计算式子可以有很多样子,只有保持等式两边对应即可。

回答3:

内插法,一般是指数学上的直线内插,利用等比关系,是用一组已知的未知函数的自变量的值和与它对应的函数值来求一种求未知函数其它值的近似计算方法,是一种未知函数,数值

内插法
逼近求法,天文学上和农历计算中经常用的是白塞尔内插法,可参考《中国天文年历》的附录。另外还有其他非线性内插法:如二次抛物线法和三次抛物线法。因为是用别的线代替原线,所以存在误差。可以根据计算结果比较误差值,如果误差在可以接受的范围内,才可以用相应的曲线代替。一般查表法用直线内插法计算。
原理
数学内插法即“直线插入法”。其原理是,若A(i1,b1),B(i2,b2)为两点,则点P(i,b)在上述两点确定的直线上。而工程上常用的为i在i1,i2之间,从而P在点A、B之间,故称“直线内插法”。
数学内插法说明点P反映的变量遵循直线AB反映的线性关系。
上述公式易得。A、B、P三点共线,则
(b-b1)/(i-i1)=(b2-b1)/(i2-i1)=直线斜率,变换即得所求。
具体方法
综述
求得满足以下函数的两个点,假设函数为线性函数,通过简单的比例式求出租赁利率。

公式
以每期租金先付为例,函数如下:
A表示租赁开始日租赁资产的公平价值; R表示每期租金数额;
S表示租赁资产估计残值;
n表示租期;
r表示折现率。
通过简单的试错,找出二个满足上函数的点(a1,b1)(a2,b2),然后,利用对函数线性的假设,通过以下比例式求出租赁利率
二次抛物线内插法
设二次抛物线关系式:y = f(x),要计算在x = x0点的函数。已知f(x1)、f(x2)和f(x3),其中x1 < x2 < x3,x1 < x0 < x3,则在x0点的函数值:f(x0)= f(x1)*(x2-x0 ) *( x3- x0) / ((x3 - x1) *(x2 - x1) )+f(x2) *( x1- x0)*( x3- x0) / ((x3 - x2) *(x1 - x2) ) +f(x3)*(x2-x0 ) *( x1- x0) / ((x1 -x3 ) *( x2- x3) )。显然本式也适合外插计算。
线性关系和三次以上抛物线可仿上式,很容易得出。

回答4:

内插法,又称插值法。根据未知函数f(x)在某区间内若干点的函数值,作出在该若干点的函数值与f(x)值相等的特定函数来近似原函数f(x),进而可用此特定函数算出该区间内其他各点的原函数f(x)的近似值,这种方法,称为内插法。按特定函数的性质分,有线性内插、非线性内插等;按引数(自变量)个数分,有单内插、双内插和三内插等。

举例:

500小时处在480小时和540小时两个数字之间,而480对应的修理费为493,540对应的为544,那么根据内插法,500小时对应的数字为x

就可以列方程为:(500-480)/(540-480)=(x-493)/(544-493),解这个方程,即可得出500小时对应的修理费。

将上面的式子变形,得出X=493+(500-480)/(540-480)*(544-493)。

回答5:

又称插值法。根据未知函数f(x)在某区间内若干点的函数值,作出在该若干点的函数值与f(x)值相等的特定函数来近似原函数f(x),进而可用此特定函数算出该区间内其他各点的原函数f(x)的近似值,这种方法,称为内插法。