∫ x³√(1 - 5x²) dx,u² = 1 - 5x²,2u du = - 10x dx
= ∫ x³ * u * (2u)/(- 10x) du
= - ∫ (1 - u²)/5 * u²/5 du
= (- 1/25)∫ (u² - u⁴) du
= (- 1/25)(u³/3 - u⁵/5) + C
= (- 1/375)[5(1 - 5x²)^(3/2) - 3(1 - 5x²)^(5/2)] + C
= (1/375)(2 + 15x²)(1 - 5x²)^(3/2) + C
————————————————————————
∫ 1/(1 + √x) dx,u² = x,2u du = dx
= ∫ 2u/(1 + u) du
= 2∫ (u + 1 - 1))/(u + 1) du
= 2∫ [1 - 1/(1 + u)] du
= 2u - 2ln(1 + u) + C
= 2√x - 2ln(1 + √x) + C