因log15(2)
=1/log2(15)(换底公式)
=1/[log2(3)+log2(5)](对数运算性质)
又由2^m=3知log2(3)=m(指数与对数互化)
则log15(2)=1/(m+n)
2^m=3 可得:log2(3)=m
log15(2)=1/log2(15)
=1/[log2(3)+log2(5)]
=1/(m+n)
2^m=3 log2 3=m log2 5=n
log15 2=(log 2 2)/(log 2 15)=1/( log2 3+log2 5)= 1/(m+n)