1.解: 把a1 = s1,代入已知Sn=2an-n
a1 = 2a1 - 1 ,得a1 = 1
当n>1时
an = Sn-S(n-1) = 2an-n -[2a(n-1)-(n-1)] = 2an - 2a(n-1)-1
an = 2a(n-1)+1,两边都加1
(an)+1 = 2[a(n-1)+1],
所以数列{an+1}是首项为2(因为是a1+1),公比为2的等比数列
an+1 = 2*2^(n-1) = 2^n
an的通项为2^(n)-1)
即 : an=2^(n)-12.bn=an+1/ana(n+1),是不为bn=1/an+1/ana(n+1),?如果是的话就有1/an-1/a[n+1]=(a[n+1]-an)/an*a[n+1]
=[2^(n+1)(1-1/2]/an*a[n+1]=[2^(n+1)(1/2)]/an*a[n+1]=[2^(n+1)(1/2)-(1/2)+(1/2)]/an*a[n+1]
=(1/2){[2^(n+1)-1]+1}/an*a[n+1]=(1/2)[a(n+1)+1]/an*a[n+1]=(1/2)[1/an +1/an*a(n+1)]=(1/2)bn设数列{bn}的前n项和为T(n)则有(1/2)T(n)={1/a2 -1/a1+1/a3-1/a2+...+1/a(n+1)-1/an) =[-1/a1+1/a(n+1) =1/[2^(n+1)-1]-1T(n)=1/[2^n-(1/2)] -2
(1)a_n=s_n-s_(n-1)=2(a_n-a_(n-1))-1
a_n-2a_(n-1)-1=0
a_n+1=2[a_(n-1)+1]
所以a_n+1是等比数列公比为2
令n=1得a_1=2a_1-1
a_1=1
(2)a_n+1=(a_1+1)2^(n-1)=2^n
,a_n=2^n-1
b_n=(2^n)/(2^n-1)*(2^(n+1)-1)=1/2^n-1/2^(n+1)=1/2^(n+1)
数列{bn}的前n项和T_n=[1/4-1/2^(n+2)]/[1-1/2]=1/2(1-1/2^n)