∵AE=ED
△BDE和△ABE在AD边上等高
∴S△BDE=S△ABE
∴△S△BDE+S△AEF=S△ABE+S△AEF=S△ABF
∵BD=1/4BC,
∴BD/CD=1/3
做DG∥BF交AC于G
∴FG/CG=BD/CD=1/3
AF/FG=AE/ED=1∶1
∴AF∶FG∶CG=1∶1∶3
∴AF=1/5AC,即AF/AC=1/5
∵△ABF和△ABC在AC上等高
∴S△ABF/S△ABC=AF/AC=1/5
即S△ABF=1/5S△ABC=1/5×14=14/5
∴S阴影=△S△BDE+S△AEF
=S△ABE+S△AEF
=S△ABF
=14/5