(1)、Sk=ka1+k(k-1)d/2=k/l
Sl=la1+l(l-1)d/2=l/k
解得d=2/kl,a1=1/kl,代入公式Sk+l=(k+l)²/kl,又∵k+l≥2√kl,∴Sk+l≥4,而k≠l,∴Sk+l>4
(2)、(x+1)/(x-1)>0,∴x+1>0,x-1>0或x+1<0,x-1<0,∴值域(-∞,-1)∪(1,∞)
(3)、原等式[(x+1)²+y²]·[(x-1)²+y²]=1化解得(y²)²+2y²(x²+1)+x²(x²-2)=0,解得y²=+-√4x²+1 -x²-1,y²≥0,则y²=√4x²+1 -x²-1
Sk=ka1+k(k-1)d/2=k/L
a1+(k-1)d/2=1/L (1)
SL=La1+L(L-1)d/2=L/k
a1+(L-1)d/2=1/k (2)
(1)-(2)
(k-L)d/2=1/L-1/k
(k-L)d/2 -(k-L)/kL=0
(k-L)[(d/2)-1/(kL)]=0
已知k≠L,k-L≠0,要等式成立,则d/2=1/(kL)
代入(1)
a1=1/L-(k-1)(d/2)=1/L-(k-1)/(kL)=1/(kL)
S(k+L)=(k+L)a1+(k+L)(k+L-1)(d/2)
=(k+L)/(kL)+(k+L)(k+L-1)/(kL)
=[(k+L)+(k+L)(k+L-1)]/(kL)
=(k+L)(1+k+L-1)/(kL)
=(k+L)²/(kL)
=(k²+2kL+L²)/(kL)
=(k/L)+(L/k)+2
k>0 L>0且k≠L,由
得k/L+L/k>2
S(k+L)>4