a1=1,
a2=a1/2+3=3+1/2
a3=(a2)/2+5=5/1+3/2+1/2^2,.....
an=(2n-1)/1+(2n-3)/2+(2n-5)/2^2+......+1/2^(n-1) (1)
(1)式两边同乘1/2
an/2=(2n-1)/2+(2n-3)/2^2+(2n-5)/2^3+......+3/2^(n-1)+1/2^n (2)
(1)-(2),an/2=(2n-1)/1-2[1/2+1/2^2+1/2^3+......+1/2^(n-1)]-1/2^n,
两边乘以2,并化简,得 an=4n-6+3/2^(n-1)
2an=a(n-1)+4n-2
2an-8n+12=a(n-1)-4n+10
2(an-4n+6)=a(n-1)-4(n-1)+6
设数列{bn},令bn=an-4n+6
则有2bn=b(n-1)
b1=a1-4+6=3
所以数列{bn}是首项为3、公比为1/2的等比数列
bn=b1*q^(n-1)=3*2^(1-n)
an=bn+4n-6=3*2^(1-n)+4n-6
思路:这种类型的题一般可以有待定系数法来做!
解:an+b*(n+a)=1/2*[a(n-1)+b*(n+a-1)]化简得an=1/2*a(n-1)+(-1/2*b*n)+1/2*b*(a-1)-b*a与已知关系对比得-1/2*b=2和1/2*b*(a-1)-b*a=-1解得b=-4和a=-3/2故an-4*(n-3/2)=1/2[a(n-1)-4*(n-5/2)
则数列{an-4*(n-3/2)}是首项为a1-4*(1-3/2)=3,公比为1/2的等比数列,故an-4*(n-3/2)=3/2^(n-1)
则an=4*n-6+3/2^(n-1)(其中n属于正整数)