sn为数列{an}的前n项和.已知an>0,an눀+2an=4Sn+3

2025-01-21 01:49:46
推荐回答(2个)
回答1:

n≥2时,

an²+2an=4Sn+3

a(n-1)²+2a(n-1)=4S(n-1)+3

an²+2an-a(n-1)²-2a(n-1)=4[Sn-S(n-1)]=4an

an²-a(n-1)²-2an-2a(n-1)=0

[an+a(n-1)][an-a(n-1)]-2[an+a(n-1)]=0

[an+a(n-1)][an-a(n-1)-2]=0

an>0,an+a(n-1)恒>0,因此只有an-a(n-1)-2=0

an-a(n-1)=2,为定值

数列{an}是以2为公差的等差数列。

扩展资料:

等差数列其他推论:

① 和=(首项+末项)×项数÷2;

②项数=(末项-首项)÷公差+1;

③首项=2x和÷项数-末项或末项-公差×(项数-1);

④末项=2x和÷项数-首项;

⑤末项=首项+(项数-1)×公差;

⑥2(前2n项和-前n项和)=前n项和+前3n项和-前2n项和。

回答2:

n≥2时,
an²+2an=4Sn+3
a(n-1)²+2a(n-1)=4S(n-1)+3
an²+2an-a(n-1)²-2a(n-1)=4[Sn-S(n-1)]=4an
an²-a(n-1)²-2an-2a(n-1)=0
[an+a(n-1)][an-a(n-1)]-2[an+a(n-1)]=0
[an+a(n-1)][an-a(n-1)-2]=0
an>0,an+a(n-1)恒>0,因此只有an-a(n-1)-2=0
an-a(n-1)=2,为定值
数列{an}是以2为公差的等差数列。