利用极坐标计算下列二重积分:二重符号e^(x^2+y^2)dσ,D:x^2+y^2≤4;求过程!!!

答案是π(e^4-1)求过程!!!
2024-12-15 19:03:45
推荐回答(1个)
回答1:

利用极坐标计算下列二重积分:∫∫_D e^(x² + y²) dσ,其中区域D:x² + y² ≤ 4
解:
{ x = rcosθ
{ y = rsinθ
x² + y² = 4 ==> r = 2
x² + y² = r²cos²θ + r²sin²θ = r²
∫∫_D e^(x² + y²) dσ
= ∫(0→2π) dθ ∫(0→2) e^r² · rdr
= (1/2)∫(0→2π) dθ ∫(0→2) e^r² d(r²)
= (1/2)∫(0→2π) [e^r²] |(0→2) dθ
= (1/2)∫(0→2π) (e⁴ - 1) dθ
= (1/2)(e⁴ - 1) · [θ] |(0→2π)
= (1/2)(e⁴ - 1) · (2π - 0)
= π(e⁴ - 1)