设y是x的隐函数,要求y''。
两边对x求导,得:
2x - y - xy' + 2yy' = 0,移项解出 y' = (y-2x)/(2y-x);
两边继续对x求导,得:
2 - y' - y' - xy'' + 2(y')^2 + 2yy'' = 0,移项解出 y'' = [2y' - 2 - 2(y')^2] / (2y - x),
代入y' = (y-2x)/(2y-x),得到:
y'' = { 2(y-2x)/(2y-x) - 2 - 2*(y-2x)^2/(2y-x)^2 } / (2y-x)
= 6(xy - x^2 - y^2) / (2y-x)^3. 中间过程你仔细一点计算就好了。
x² - xy + y² = 1
2x - (y + x • dy/dx) + 2y • dy/dx = 1
(-x + 2y) • dy/dx = y - 2x
dy/dx = (y - 2x)/(2y - x) = (2x - y)/(x - 2y)
d²y/dx² = [(x - 2y) d/dx (2x - y) - (2x - y) d/dx (x - 2y)]/(x - 2y)²
= [(x - 2y)(2 - dy/dx) + (y - 2x)(1 - 2dy/dx)]/(x - 2y)²
= { (x - 2y)[2 - (2x - y)/(x - 2y)] + (y - 2x)[1 - 2(2x - y)/(x - 2y)] }/(x - 2y)²
= [-3y + (y - 2x) * (-3x)/(x - 2y)]/(x - 2y)²
= [(-3y)(x - 2y) - (3x)(y - 2x)]/(x - 2y)³
= 6(x² - xy + y²)/(x - 2y)³