方法一:
∫x³/√(1+x²) dx
=∫x²/√(1+x²) d(x²/2)
=(1/2)∫(1+x²-1)/√(1+x²) d(x²+1)
=(1/2)∫√(1+x²) d(1+x²) - (1/2)∫d(x²+1)/√(1+x²)
=(1/2)*(2/3)*(1+x²)^(3/2) - (1/2)*2√(1+x²) + C
=(1/3)(x²-2)√(1+x²) + C
方法二:
令x=tany,dx=sec²y dy
√(1+x²)=√(1+tan²y)=√sec²y=secy
原式=∫tan³y/secy * sec²y dy
=∫tan²y*(secytany) dy
=∫(sec²y-1) d(secy)
=(1/3)sec³y-secy + C
=(1/3)(1+x²)^(3/2)-√(1+x²) + C
=(1/3)(x²-2)√(1+x²) + C
希望能帮到你! 答案我算出来了,但过程很难叙述,主要讲x化为1/2dx^2即可顺利求教,答案是1/3(8-根号8)。很好算的。
∫x^3/√(1+x^2)dx
=1/2∫x^2/√(1+x^2)dx^2
=1/2∫(1+x^2-1)/√(1+x^2)dx^2
=1/2∫√(1+x^2)dx^2-1/2∫1/√(1+x^2)dx^2
=1/2*2/3*(1+x^2)^(3/2)-√(1+x^2)
=1/3*(1+x^2)^(3/2)-√(1+x^2) +C