积分区域被直线 x+y=π/2 划分为两块,D1:0≤y≤π/4,y≤x≤π/2-y,D2:π/4≤x≤π/2,π/2-x≤y≤x,因此原式=∫(0,π/4)dy∫(y,π/2-y) cos(x+y) dx- ∫(π/4,π/2)dx∫(π/2-x,x) cos(x+y) dy=∫(0,π/4) (1-cos2y) dy-∫(π/4,π/2) (cos2x-1) dx=∫(0,π/2) (1-cos2x) dx=x - 1/2*sin2x | (0,π/2)=π/2 。