原式=e^(xln(sin1/x+cos1/x-1+1)
ln(1+x)~x x—0
ln(sin1/x+cos1/x-1+1)~sin1/x+cos1/x-1
x(sin1/x+cos1/x-1)=x(sin1/x-2sin(1/2x)^2)
=2xsin(1/2x)(cos1/2x -sin1/2x)=2x*1/2x=1
sin1/2x~1/2x
值为e
设t=1/x,则t→0
原式=lim(t→0)(1+sint+cost-1)^(1/t)
=lim(t→0)(1+t-t²/2)^(1/t)
=lim(t→0)[1+(2t-t²)/2]^[2/(2t-t²)*(2t-t²)/2t]
=e