判断一个函数是不是复合函数,可以看其中一个函数的值域是否存在非空子集Z是另一个函数的定义域的子集,只有满足这个条件时,二者才会构成一个复合函数。
设y是u的函数y=f(u),u是x的函数u=g(x),如果g(x)的值全部或部分在f(u)的定义域内,则y通过u成为x的函数,记作y=f[g(x)],称为由函数y=f(u)与u=g(x)复合而成的复合函数。
复合函数通俗地说就是函数套函数,是把几个简单的函数复合为一个较为复杂的函数。复合函数中不一定只含有两个函数,有时可能有两个以上,如y=f(u),u=φ(v),v=ψ(x),则函数y=f{φ[ψ(x)]}是x的复合函数,u、v都是中间变量。
扩展资料:
判断复合函数的单调性的步骤如下:
1、求复合函数的定义域;
2、将复合函数分解为若干个常见函数(一次、二次、幂、指、对函数);
3、判断每个常见函数的单调性;
4、将中间变量的取值范围转化为自变量的取值范围;
5、求出复合函数的单调性。
参考资料来源:百度百科-复合函数
可以通过观察自变量的形式来确定此函数是否为复合函数。举个例子,如f(x)=sin(x),自变量是x,这就是个简单的函数。
再如f(x)=sin²(x),虽说自变量仍然是x,但原函数也可以换个角度,看作f(u)=u²,自变量是u=sin(x),这样的话,sin²(x)就是个复合函数了。
设函数Y=f(u)的定义域为D,函数u=φ(x)的值域为Z,如果D∩Z,则y通过u构成x的函数,称为x的复合函数,记作Y=f[φ(x)]。x为自变量,y为因变量,而u称为中间变量。
扩展资料:
判断复合函数的单调性的步骤如下:
⑴求复合函数的定义域;
⑵将复合函数分解为若干个常见函数(一次、二次、幂、指、对函数);
⑶判断每个常见函数的单调性;
⑷将中间变量的取值范围转化为自变量的取值范围;
⑸求出复合函数的单调性。
例如:讨论函数y= 的单调性。
解:函数定义域为R;
令u=x2-4x+3,y=0.8u;指数函数y=0.8u在(-∞,+∞)上是减函数;
u=x2-4x+3在(-∞,2]上是减函数,在[2,+∞)上是增函数;
∴ 函数y= 在(-∞,2]上是增函数,在[2,+∞)上是减函数。
参考资料来源:百度百科——复合函数
不是任何两个函数都可以复合成一个复合函数,只有当Mx∩Du≠Ø时,二者才可以构成一个复合函数。
设函数y=f(u[1] )的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果Mx∩Du≠Ø,那么对于Mx∩Du内的任意一个x经过u;有唯一确定的y值与之对应,则变量x与y之间通过变量u形成的一种函数关系,这种函数称为复合函数,记为:y=f[g(x)],其中x称为自变量,u为中间变量,y为因变量(即函数)。
定义域
[2] 若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f[g(x)]的定义域是
D={x|x∈A,且g(x)∈B} 综合考虑各部分的x的取值范围,取他们的交集。
求函数的定义域主要应考虑以下几点:
⑴当为整式或奇次根式时,R的值域;
⑵当为偶次根式时,被开方数不小于0(即≥0);
⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0;
⑷当为指数式时,对零指数幂或负整数指数幂,底不为0。
⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。
⑹分段函数的定义域是各段上自变量的取值集合的并集。
⑺由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求。
⑻对于含参数字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空集合。
⑼对数函数的真数必须大于零,底数大于零且不等于1。
⑽三角函数中的切割函数要注意对角变量的限制。
周期性
设y=f(u)的最小正周期为T1,μ=φ(x)的最小正周期为T2,则y=f(μ)的最小正周期为T1*T2,任一周期可表示为k*T1*T2(k属于R+)
判断复合函数的单调性的步骤如下:
⑴求复合函数的定义域;
⑵将复合函数分解为若干个常见函数(一次、二次、幂、指、对函数);
⑶判断每个常见函数的单调性;
⑷将中间变量的取值范围转化为自变量的取值范围;
⑸求出复合函数的单调性。
可以通过观察自变量的形式来确定此函数是否为复合函数。举个例子,如f(x)=sin(x),自变量是x,这就是个简单的函数。再如f(x)=sin²(x),虽说自变量仍然是x,但原函数也可以换个角度,看作f(u)=u²,自变量是u=sin(x),这样的话,sin²(x)就是个复合函数了。
看一个函数是不是复合函数的话,看看他是不是有最基本的行数告成,比如说一次函数二次函数啊,然后他在他的图像上呈现出的那是两条线的货,是两条线往以上。