上下除以x=(sin5x/x)/(sin3x/x)=5(sin5x/5x)/[3(sin3x/3x)]x趋向于0则5x趋向于0,3x趋向于0所以sin5x/5x和sin3x/3x极限都是1所以原来极限=5/3
令5x=y,最后结果为5/3
x趋于0时,5x也是趋于0,lim sin5x/3x=lim sin5x/(5x*(3/5))=(5/3)lim sin5x/5x=5/3