微积分中的求导法则,用于求一个复合函数的导数,在微积分的求导运算中一种常用的方法。复合函数的导数将为构成复合这有限个函数在相应点的导数的乘积,称链式法则。
链式法则在积分中的应用:
链式法则:
我们在写这个公式时,常常习惯用u来代替g,即:
如果换一种写法,就是让:
就可得:
这样就可以直接将dx消掉。
扩展资料
例题
求导y=sin(x²+1)链式求导:令f(x)=sinx,g(x)=x²+1
则(f(g(x)))’=f’(g(x))g’(x)=[sin(x²+1)]’·2x=2cos(x²+1)x即可求得。
在实际应用中,可将dy/dx=(dy/dz)·(dz/dx)看作为分数的约分过程,这种用法在求不定积分中会更广泛地使用。这个结论可推广到任意有限个函数复合到情形,于是复合函数的导数将是构成复合这有限个函数在相应点的 导数的乘积,就像锁链一样一环套一环,故称链式法则。
参考资料来源:百度百科-不定积分
参考资料来源:百度百科-链式法则
链式法则是微积分中的求导法则,用于求一个复合函数的导数,是在微积分的求导运算中一种常用的方法。复合函数的导数将是构成复合这有限个函数在相应点的 导数的乘积,就像锁链一样一环套一环,故称链式法则。
扩展资料:
求导
链式求导:令
则
即可求得。在实际应用中,可将
看作是分数的约分过程,这种用法在求不定积分中会更广泛地使用。
链式法则(英文chain rule)是微积分中的求导法则,用以求一个复合函数的导数,是在微积分的求导运算中最常用的方法。
式法则(英文chain rule)是微积分中的求导法则,用以求一个复合函数的导数,是在微积分的求导运算中最常用的方法。
中文名:链式法则
外文名:chain rule
应用学科:数学
适用领域范围:微积分
适用领域范围:微分(求导)
分享
内容
表达式:
其他形式:
【链式法则用文字描述,就是“由两个函数凑起来的复合函数,其导数等于里边函数代入外边函数的值之导数,乘以里边函数的导数。】
例题:求导
链式求导:令
则
即可求得。
在实际应用中,可将看作是分数的约分过程(虽然链式求导本质上不能等同于分式约分,但是实际操作中两者的结果相同,不能算错,所以放心大胆地去用吧,老师不会打叉),这种用法在求不定积分中会更广泛地使用。
证明
下面介绍一种最简单的证明方法:
链式法则的最简单的证明方法是用积法则和归纳法进行证明。
微积分的求导积法则:
剩下只需要把原函数代入积法则即可求证。
以下再介绍两种较为复杂的方法:
证法一:先证明个引理
f(x)在点x0可导的充要条件是在x0的某邻域U(x0)内,存在一个在点x0连续的函数H(x),使f(x)-f(x0)=H(x)(x-x0)从而f'(x0)=H(x0)
证明:设f(x)在x0可导,令 H(x)=[f(x)-f(x0)]/(x-x0),x∈U'(x0)(x0去心邻域);H(x)=f'(x0),x=x0
因lim(x->x0)H(x)=lim(x->x0)[f(x)-f(x0)]/(x-x0)=f'(x0)=H(x0)
所以H(x)在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0)
反之,设存在H(x),x∈U(x0),它在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0)
因存在极限lim(x->x0)H(x)=lim(x->x0)[f(x)-f(x0)]/(x-x0)=lim(x->x0)f(x)=H(x0)
所以f(x)在点x0可导,且f'(x0)=H(x0)
引理证毕。
设u=φ(x)在点u0可导,y=f(u)在点u0=φ(x0)可导,则复合函数F(x)=f(φ(x))在x0可导,且F'(x0)=f'(u0)φ'(x0)=f'(φ(x0))φ'(x0)
证明:由f(u)在u0可导,由引理必要性,存在一个在点u0连续的函数H(u),使f'(u0)=H(u0),且f(u)-f(u0)=H(u)(u-u0)
又由u=φ(x)在x0可导,同理存在一个在点x0连续函数G(x),使φ'(x0)=G(x0),且φ(x)-φ(x0)=G(x)(x-x0)
于是就有,f(φ(x))-f(φ(x0))=H(φ(x))(φ(x)-φ(x0))=H(φ(x))G(x)(x-x0)
因为φ,G在x0连续,H在u0=φ(x0)连续,因此H(φ(x))G(x)在x0连续,再由引理的充分性可知F(x)在x0可导,且
F'(x0)=f'(u0)φ'(x0)=f'(φ(x0))φ'(x0)
证法二:y=f(u)在点u可导,u=g(x)在点x可导,则复合函数y=f(g(x))在点x0可导,且dy/dx=(dy/du)*(du/dx)
证明:因为y=f(u)在u可导,则lim(Δu->0)Δy/Δu=f'(u)或Δy/Δu=f'(u)+α*lim(Δu->0),(α=0)
当Δu≠0,用Δu乘等式两边得,Δy=f'(u)Δu+αΔu
但当Δu=0时,Δy=f(u+Δu)-f(u)=0,故上等式还是成立。
又因为Δx≠0,用Δx除等式两边,且求Δx->0的极限,得
dy/dx=lim(Δx->0)Δy/Δx=lim(Δx->0)[f'(u)Δu+αΔu]/Δx=f'(u)lim(Δx->0)Δu/Δx+lim(Δx->0)αΔu/Δx
又g(x)在x处连续(因为它可导),故当Δx->0时,有Δu=g(x+Δx)-g(x)->0
则lim(Δx->0)α=0
最终有dy/dx=(dy/du)*(du/dx)