(1)令u=1+lnx
则du=1/x·dx
原式=∫1/u·du
=ln|u|+C
=ln|1+lnx|+C
∫dx/[x(1+lnx)]
let
y= lnx
dy = (1/x)dx
∫dx/[x(1+lnx)]
=∫dy/(1+y)
=ln|1+y| + C
=ln|1+lnx| + C
(2)
∫[√(1-x^2) /x^2 ]dx
let
x=sinu
dx=cosudu
∫[√(1-x^2) /x^2 ]dx
=∫ (tanu)^2 du
=∫ [(secu)^2-1] du
=tanu - u + C
=x/√(1-x^2) - arcsinx + C