求助两道数学微积分的题,大神来帮忙解决一下!

2025-01-21 15:25:24
推荐回答(2个)
回答1:

(1)令u=1+lnx
则du=1/x·dx
原式=∫1/u·du
=ln|u|+C
=ln|1+lnx|+C

回答2:

∫dx/[x(1+lnx)]

let
y= lnx
dy = (1/x)dx

∫dx/[x(1+lnx)]
=∫dy/(1+y)
=ln|1+y| + C
=ln|1+lnx| + C

(2)
∫[√(1-x^2) /x^2 ]dx
let
x=sinu
dx=cosudu

∫[√(1-x^2) /x^2 ]dx
=∫ (tanu)^2 du
=∫ [(secu)^2-1] du
=tanu - u + C
=x/√(1-x^2) - arcsinx + C