设数列{an}的前n项和为Sn,并且满足2Sn=an2+n,an>0(n∈N*).(Ⅰ)求a1,a2,a3;(Ⅱ)猜想{an}的通

2025-01-21 00:59:39
推荐回答(2个)
回答1:

2a1=2S1=a1²+1

a1²-2a1+1=0

(a1-1)²=0

a1=1

2S2=2(a1+a2)=a2²+2

a2²-2a2=0

a2(a2-2)=0

a2=0(舍去)或a2=2

2S3=2(a1+a2+a3)=a3²+3

a3²-2a3-3=0

(a3+1)(a3-3)=0

a3=-1(舍去)或a3=3

a1为1,a2为2,a3为3

(2)

猜想:an=n

n=1时,a1=1,满足表达式

假设当n≤k(k∈N*)时都满足表达式,即ak=k,则当n=k+1时

2S(k+1)=a(k+1)²+k+1

2(1+2+...+k)+2a(k+1)=a(k+1)²+k+1

2k(k+1)/2 +2a(k+1)=a(k+1)²+k+1

a(k+1)²-2a(k+1)+1=k²

[a(k+1)-1]²=k²

a(k+1)-1=-k或a(k+1)-1=k

a(k+1)=-k+1(舍去)或a(k+1)=k+1

a(k+1)=k+1,同样满足表达式

k为任意正整数,因此对于任意正整数n,an=n

数列{an}的通项公式为an=n

(3)

实在看不懂你

乱七八糟写的是什么。

回答2:

(Ⅰ)由于数列{an}的前n项和为Sn,并且满足2Sn=an2+n,an>0(n∈N*),
令n=1可得2S1=2a1=a12+1,解得a1 =1.
再令n=2可得 2(1+a2)=a22+2,解得a2 =2,同理求得a3=3.
(Ⅱ)猜想{an}的通项公式为 an=n.
证明:当n=1时,显然an=n成立.
假设n=k时,命题成立,即 ak=k,则 ak+1=Sk+1-Sk=

ak+12+k+1
2
-
ak2+k
2
=
ak+12?k2+1
2

化简可得 ak+12-2ak+1+1-k2=0,解方程求得ak+1=k+1,
故当n=k+1时,an=n还成立.
综上可得 an=n对所有的正整数都成立.
(Ⅲ)由不等式(1+
1
b1
)(1+
1
b2
)
…(1+
1
bn
)≥m
2n+1
对一切n∈N*均成立,
可得 m≤
(1+
1
b1
)(1+
1
b2
)…(1+
1
bn
)
2n+1

由于bn=2an-1=2n-1,设F(n)=
1
2n+1
?(1+
1
b1
)(1+
1
b2
)
…(1+
1
bn

=
1
2n+1
?(1+
1
1
)?(1+
1
3
)?(1+
1
5
)…(1+
1
2n?1
),
F(n+1)
F(n)
=
1
2n+3
(1+
1
b1
)(1+
1
b2
)…(1+
1
bn+1
)
1
2n+1
(1+
1
b1
)(1+
1
b2
)…(1+
1
bn
)
=
2n+2
(2n+1)(2n+3)

=
2(n+1)
4(n+1)2?1
2(n+1)
2(n+1)
=1,
F(n+1)>F(n),即F(n)是随n的增大而增大,故F(n)的最小值为F(1)=
2
3
=
2