解:(1)依题意得
因为,α∈(0,π/2),tanα=1/2
所以,tan2a=2tana/[1-(tana)^2]
=2*1/2/[1-1/4]
=1/3/4
=4/3
(2)因为α∈(0,π/2)
所以,sina>0,cosa>0 2a∈(0,π)
因为,tana=1/2,(sina)^2+(cosx)^2=1
解得sina=√5/5,cosa=2√5/5
所以sin2a=2sinacosa=4/5,cos2a=±3/5
当sin2a=4/5,cosa=3/5时,
sin(2α+π/3)=1/2*sin2a+√3/2*cos2a
=1/2*4/5+√3/2*3/5
=(4+3√3)/10
当sin2a=4/5,cosa=-3/5时,
sin(2α+π/3)=1/2*sin2a+√3/2*cos2a
=1/2*4/5-√3/2*3/5
=(4-3√3)/10
sin(2α+π/3)