设函数Q(x,y)在平面xOy上具有一阶连续偏导数,曲线积分∫L2xydx+Q(x,y)dy与路径无关,并且对任意t

2025-01-20 04:52:10
推荐回答(1个)
回答1:

由平面上曲线积分与路径无关的条件可得

?Q
?x
?(2xy)
?y
=2x,从而可得
Q(x,y)=x2+C(y),
其中,C(y)待定.
因为积分与路径无关,取 (0,0)→(t,0)→(t,1),

 
2xydx+Q(x,y)dy

=
[t2+C(y)]dy

=t2+
C(y)dy

取 (0,0)→(0,t)→(1,t),则
 
2xydx+Q(x,y)dy

=
C(y)dy
+
2txdx

=
C(y)dy
+t.
由题设
2xydx+Q(x,y)dy
=
2xydx+Q(x,y)dy
 可知,
t2+
C(y)dy
=
C(y)dy
+t.
两边对t求导可得,
2t=C(t)+1,
所以 C(t)=2t-1,
从而 C(y)=2y-1.
故有,
Q(x,y)=x2+2y-1.