简单分析一下,答案如图所示
全导数的概念就是对只有一个自变量而言的.一个多元函数无论与其他函数多少次复合,只要最终只有一个自变量,我们对这个唯一的自变量求导,求得的就是全导数.而多元函数,无论它是否是与多元函数还是一元函数复合,只要最终函数的自变量不止一个,那么就不存在全导数了,对各个自变量分别求得的就是偏导数.例如z=f(u),u=g(x,y),复合函数z=f(g(x,y))就不存在对自变量x或y的全导数,只有对x或y的偏导数.