人类过多地使用氯氟烃类化学物质(用CFCs表示)是臭氧层被破坏的主要原因。氯氟烃是一种人造化学物质。在第二次世界大战后,尤其是进入20世纪60年代以后,氯氟烃大量用作气溶胶、制冷剂、发泡剂、化工溶剂等。
另外,哈龙类物质(用于灭火器)、氮氧化物也会造成臭氧层的损耗。
扩展资料
臭氧层的保护
发展中国家必须于2005年之前将氟氯烃的排放量冻结在1995-1997年的平均数量上,而发达国家已于1996年间基本停止使用这些消耗臭氧层的主要物质。
因此,必须积极寻找新的制冷工质来代替氯氟烃类物质,世界各国已经进行了许多新的尝试,主要是应用两类制冷剂和确定三个发展方向。
两类制冷剂为混合制冷剂和单一制冷剂,三个发展方向是使用HCFC,HFC及天然工质。HFC是氢氟碳物质,其典型代表是单一工质R134a和混合工质R407c,这种物质的臭氧破坏指数ODP值为0。
HCFC是氢氯氟碳物质,其典型代表是R22,其ODP值为0.05。天然工质的典型代表为氨、CO2和碳氢类物质,如R600等。
参考资料来源:百度百科-臭氧层破坏物质
对于大气臭氧层破坏的原因,科学家中间有多种见解。但是大多数人认,人类过多地使用氯氟烃类化学物质(用CFCs表示)是破坏臭氧层的主要原因。氯氟烃是一种人造化学物质,1930年由美国的杜邦公司投入生产。在第二次世界大战后,尤其是进入60年以后,开始大量使用,主要用作气溶胶、制冷剂、发泡剂、化工溶剂等。另外,哈龙类物质(用于灭火器)、氮氧化物也会造成臭氧层的损耗。
在平流层内离地面20~30千米的地方是臭氧的集中层带,在这个臭氧层中存在着氧原子(O)、氧分子(O2)和臭氧(O3)的动态平衡。但是氮氧化物、氯、溴等活性物质及其他活性基团会破坏这个平衡,使其向着臭氧分解的方向转移。而CFCs物质的非同寻常的稳定性使其在大气同温层中很容易聚集起来,其影响将持续一个世纪或更长的时间。在强烈的紫外辐射作用下它们光解出氯原子和溴原子,成为破坏臭氧的催化剂(一个氯原子可以破坏10万个臭氧分子)。
臭氧层破坏机理
(1)、废气破坏臭氧层
废气中含有大量的氮氧化物(如N0和N02等),这些氮氧化物可以破坏掉大量的臭氧分子,从而造成臭氧层的破坏。
(2)、CFCs和哈龙对臭氧层的破坏
美国科学家莫里纳(Molina)和罗兰德(Rowland)提出:人工合成的一些含氯和含溴的物质是造成臭氧层被破坏的元凶,最典型的是氯氟烃类化合物(CFCs)和含溴化合物哈龙(Halons)。
CFCs和哈龙在生产和使用过程中总是要泄漏的,泄漏后首先进入大气的对流层中。而这些物质在对流层中是化学惰性的,即它们在对流层中十分稳定,可以存在几十年甚至上百年不发生变化。但这些物质不可能总是存在于对流层中,通过极地的大气环流以及赤道地带的热气流上升,最终使这些物质进入平流层。然后又在风的作用下,把它们从低纬度地区向高纬度地区输送,在平流层内混合均匀。在平流层内,强烈的太阳紫外线照射使CFCs和Halons分子发生解离,释放出高活性的氯和溴的自由基。氯原子自由基和溴原子自由基就是破坏臭氧层的主要物质,它们对臭氧破坏的化学机理如下:
R-Cl→R·+ Cl·
Cl·+O3→Cl0·+ O2
C10·+O3→Cl·+ 2O2
溴原子自由基也是以同样的过程破坏臭氧。据估算,一个氯原子自由基在失活以前可以破坏掉104—105个臭氧分子,而由Halon释放的溴原子自由基对臭氧的破坏能力是氯原子的30—60倍。而且,氯原子自由基和溴原子自由基之间还存在协同作用,即二者同时存在时,破坏臭氧的能力要大于二者简单的加和。
当然,臭氧空洞的形成除了以上的化学过程外,还有空气动力学过程和极地特殊的温度变化过程所参与的非均相的催化反应过程,这就是为什么臭氧空洞出现在两极以及多发生在春季。
臭氧层破坏的长期性
令科学家和社会各界忧虑的是,CFCs和Halons具有很长的大气寿命,一旦进入大气就很难去除,这就意味着即使人类停止生产和使用这些物质,它们对臭氧层的破坏还会持续一个漫长的过程。但是通过全人类的努力,臭氧层的破坏程度会越来越小,最后使之恢复到其原始状态。
我来回答你!
越来越多的科学证据证实氯和溴在平流层通过催化化学过程破坏臭氧是造成南极臭氧洞的根本原因。
人工合成的一些含氯和含溴的物质是造成南极臭氧洞的元凶,最典型的是氟氯碳化合物(CFCs,俗称氟里昂)和含溴化合物哈龙(Halons)。
那么,氟里昂和哈龙是怎样进入平流层,又是如何引起臭氧层破坏的呢?
我们知道,就重量而言,人为释放的CFCs 和Halons的分子都比空气分子重,但这些化合物在对流层是化学惰性的,即使最活泼的大气组分—自由基对CFCs 和Halons的氧化作用也微乎其微,完全可以忽略。因此它们在对流层十分稳定,不能通过一般的大气化学反应去除。经过一两年的时间,这些化合物会在全球范围内的对流层分布均匀,然后主要在热带地区上空被大气环流带入到平流层,风又将它们从低纬度地区向高纬度地区输送,在平流层内混合均匀。
在平流层内,强烈的紫外线照射使CFCs 和Halons分子发生解离,释放出高活性的原子态的氯和溴,氯和溴原子也是自由基。氯原子自由基和溴原子自由基就是破坏臭氧层的主要物质,它们对臭氧的破坏是以催化的方式进行的:
Cl + O3 →ClO + O2
ClO + O →Cl + O2
溴原子自由基也是以同样的过程破坏臭氧,因此,也是催化剂。据估算,一个氯原子自由基可以破坏104—105个臭氧分子,而由Halon释放的溴原子自由基对臭氧的破坏能力是氯原子的30—60倍。而且,氯原子自由基和溴原子自由基之间还存在协同作用,即二者同时存在时,破坏臭氧的能力要大于二者简单的加和。
但是,上述的均相化学反应并不能解释南极臭氧洞形成的全部过程。深入的科学研究发现,臭氧洞的形成是有空气动力学过程参与的非均相催化反应过程。所谓非均相,是指大气中除气态组分外,还有固相和液相的组分。人们对大气中存在云、雾和降雨等早已司空见惯,但这种现象一般发生在对流层。平流层干燥寒冷,空气稀薄,较少出现对流层这些天气现象。但在冬天,南极地区的温度极低,可以达到零下80 oC, 这样极端的低温造成两种非常重要的过程,一是极地的空气受冷下沉,形成一个强烈的西向环流,称为“极地涡旋”(Polar Vortex)。该涡旋的重要作用是使南极空气与大气的其余部分隔离,从而使涡旋内部的大气成为一个巨大的反应器。另外,尽管南极空气十分干燥,极低的温度使该地区仍有成云过程,云滴的主要成分是三水合硝酸(HNO33H2O)和冰晶,称为极地平流层云(Polar Stratospheric clouds)。
实际上,当CFCs 和Halons进入平流层后,通常是以化学惰性的形态(ClONO2和HCl)而存在,并无原子态的活性氯和溴的释放。南极的科学考察和实验室的研究都证明,化学惰性的ClONO2和HCl 在平流层云表面会发生以下化学反应:
ClONO2 + HCl → Cl2 + HNO3
ClONO2 + H2O → HOCl + HNO3
生成的HNO3 被保留在云滴相中。当云滴成长到一定的程度后将会沉降到对流层,与此同时也使HNO3从平流层去除,其结果是造成Cl2 和HOCl 等组分的不断积累。
Cl2 和HOCl 是在紫外线照射下极易光解的分子,但在冬天南极的紫外光极少,Cl2 和HOCl的光解机会很小。当春天来临时,阳光返回南极地区,太阳辐射中的紫外射线使Cl2 和HOCl开始发生大量的光解,产生前述的均相催化过程所需的大量的原子氯,从而造成严重的臭氧损耗。氯原子的催化过程可以解释所观测到的南极臭氧破坏的约70%,另外,氯原子和溴原子的协同机制可以解释大约20%。 随后更多的太阳光到达南极,南极地区的温度上升,气象条件发生变化,结果是南极涡旋逐渐消失,南极地区臭氧浓度极低的空气传输到地球的其他高纬度和中纬度地区,造成全球范围的臭氧浓度下降。
人类使用的化学材料如氟里昂等挥发到空气作用的结果