已知数列{an}的前n项和为Sn,且Sn=2an-2n+1,n∈N*.设bn=log2Snn,tn=1bn+1bn+1+1bn+2+…+1b2n?1,是否

2025-01-21 01:52:51
推荐回答(1个)
回答1:

当n=1时,S1=2a1-4,解得a1=4.
由题意得Sn=2an-2n+1,Sn+1=2an+1-2n+2
两式相减得an+1=2an+1-2an-2n+1
于是an+1=2an+2n+1

an+1
2n+1
-
an
2n
=1
∴数列{
an
2n
}为首项为2,公差为1的等差数列,
an
2n
=n+1,即an=2n(n+1)
代入Sn=n?2n+1
bn=lo
g
=n+1,
∴tn=
1
bn
+
1
bn+1
+
1
bn+2
+…+
1
b2n?1
=
1
n+1
+
1
n+2
+…+
1
2n

∴tn+1-tn=
1
2(2n+1)(n+1)

∵n是正整数,∴tn+1-tn>0,即tn+1>tn
∴数列{tn}是一个单调递增数列,
又t1=b2=
1
2
,∴tn≥t1=
1
2

要使tn
k
12
恒成立,则有
1
2
k
12
,即k<6,
又k是正整数,故存在最大正整数k=5使tn
k
12
恒成立.