令 u = z/y, 则 x^2+z^2 = yf(z/y) = yf(u), (1)
式(1)两边对 x 求偏导, 得
2x + 2z∂z/∂x = y(∂f/∂u)(1/y)∂z/∂x = (∂f/∂u)(∂z/∂x),
则 ∂z/∂x = 2x/(∂f/∂u-2z);
式(1)两边对 y 求偏导, 得
2z∂z/∂y = f(u) + y(∂f/∂u)[y(∂z/∂y)-z]/y^2 = f(z/y) + (∂f/∂u)(∂z/∂y-z/y)
则 ∂z/∂y = [(z/y)(∂f/∂u)-f(z/y)]/(∂f/∂u-2z).