(1)设等比数列{an}的首项为a1、公比为q,∵a3=8,a6=64,∴q3= a6 a3 =8,解得q=2,且a1=2,则an=a1qn?1=2n,(2)由(1)得,a3=8、a5=32,则b3=8、b5=32,则数列{bn}的公差d= b5?b3 5?3 =12,再代入b3=b1+2d=8,解得b1=-16,∴bn=b1+(n-1)d=12n-28,∴前n项和Sn= n(?16+12n?28) 2 =6n2-22n.