高中数学:已知函数f(x)=x^눀+2mx+m^눀-1⼀2m-3⼀2,当x>0时,恒有f(x)大于0,求m取值范围

2025-04-05 01:44:24
推荐回答(1个)
回答1:

f(x)=x²+2mx+m²-1/2m-3/2=(x+m)²-1/2m-3/2
开口向上,对称轴为x=-m
若m>=0, 则f(x)在x>0单调增,f(0)=m²-1/2m-3/2>=0即可,得:2m²-m-3>=0, (2m-3)(m+1)>=0, 得:m>=3/2
若m<0, 则f(-m)=-1/2m-3/2为最小值,则须有-1/2m-3/2>0, 得:m<-3
综合得m的取值范围是:m>=3/2, 或m<-3