(1)∵4S1=4a1=(a1+1)2,
∴a1=1.当n≥2时,4an=4Sn-4Sn-1=(an+1)2-(an-1+1)2,
∴2(an+an-1)=an2-an-12,又{an}各项均为正数,
∴an-an-1=2.数列{an}是等差数列,
∴an=2n-1.
( 2)Sn=n2,若2n≥tSn对于任意的n∈N*恒成立,则t≤min{
}.令bn=2n n2
,.2n n2
当n≥3时,
=bn+1 bn
=2n2
(n+1)2
>1.
n2+(n?1)n+n
n2+2n+1
又b1=2,b2=1,b3=
,8 9
∴min{bn}=min{
}=2n n2
.8 9
∴t的最大值是
.8 9