解:P=(x-y)/(x²+4y²);Q=(x+4y)/(x²+4y²);
∂P/∂y=[-(x²+4y²)-8y(x-y)]/(x²+4y²)²=(-x²+4y²-8xy)/(x²+4y²)²;
∂Q/∂x=[(x²+4y²)-2x(x+4y)]/(x²+4y²)²=(-x²+4y²-8xy)/(x²+4y²)²;
∂P/∂y=∂Q/∂x;因此积分∮[(x+4y)dy+(x-y)dx]/(x²+4y²)与路径无关。按格林公式:
∮[(x+4y)dy+(x-y)dx]/(x²+4y²)=∫∫(∂Q/∂x-∂P/∂y)dxdy=0