f(0+)
=lim(x->0) xe^(-1/x)
=0
f(0-)
=f(0)
=lim(x->0) ln(1+x)
=0
x=0, f(x) 连续
f'(0+)
=lim(h->0) [he^(-1/h) -f(0) ]/h
=lim(h->0) e^(-1/h)
=0
f'(0-)
=lim(h->0) [ln(1+h) -f(0) ]/h
=lim(h->0) h/h
=1
=> f'(0) 不存在
x>0
f(x) = xe^(-1/x)
f'(x) =(1+ 1/x) e^(-1/x)
-1
f'(x) = 1/(1+x)
ie
f'(x)
=(1+ 1/x) e^(-1/x) ; x>0
= 1/(1+x) ; -1
按区间求导不就行了。求导会不会?