反证法 设其线性相关,则存在不全为0的一组数K1、K2、……Kr,使得 K1β1+K2β2+……Krβr=0 代入 即K1(α1+αr)+……Kr(αr)=0 整理后得 K1α1+K2α2+……(K1+K2+……Kr)αr=0 由于K1、K2、……Kr不全为0,因此此方程系数也不全为0 ,即向量组α1,α2,…,αr线性相关 矛盾,得证。