对的
可以通过等比数列和求出
也可以用一个简单方法:
(1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256)+1/256
=1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/128
=1/2+1/4+1/8+1/16+1/32+1/64+1/64
=……
=1
所以
1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256=255/256
设:1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256 = s.
则:s = 1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256
= 1/2+(1/2)^2+(1/2)^3+(1/2)^4+(1/2)^5+(1/2)^6+(1/2)^7+(1/2)^8
等式两边各乘(1/2)得:
s/2 = (1/2)^2+(1/2)^3+(1/2)^4+(1/2)^5+(1/2)^6+(1/2)^7+(1/2)^8+(1/2)^9
下面等式减上面等式得:
s/2-s = (1/2)^9-1/2. 解此方程得:
s/2 = 1/2-(1/2)^9; s = 1-(1/2)^8 = 1-1/256 = 255/256.
答:1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256 = 255/256.
分子部分通分之后为:128+ 64+32+16+8+4+2+1=2^8-1=255
所以你的答案是对的
这是一个等比数列!
首项为1/2,公比为1/2,共有8项
那么和为Sn=[1/2(1-1/2^8)]/(1-1/2)=255/256
1/2^1+1/2^2+1/2^3+……+1/2^n=1-1/2^n
所以原式=1-1/256=255/256