用正交变换将二次型f(x1,x2,x3)=x1^2+2x2^2+x3^2+2x1x3华为标准型

2024-12-02 03:35:42
推荐回答(1个)
回答1:

解: A=
1 0 1
0 2 0
1 0 1

|A-λE|=-λ(2-λ)^2

A的特征值为 2,2,0

(A-2E)X=0 的基础解系为 a1=(0,1,0)', a2=(1,0,1)' --已正交
AX=0 的基础解系为 a3=(1,0,-1)'.

单位化得: b1=(0,1,0)', b2=(1/√2,0,1/√2)', b3=(1/√2,0,-1/√2)'

令 P=(b1,b2,b3), 则P为正交矩阵, X=PY 为正交变换
f = 2y1^2+2y2^2.