1)学好 python。
现在几乎所以公司的数据都可以 api 给你,而 python 的数据处理能力强大且方便。加之在 machine learning 的很多算法上,python 也独俏一方。另外,它的简明方便迅速迭代开发,15 分钟写完个算法就可以看效果了。
除此之外,py 还有点酷酷的感觉。任何程序拿 matlab 和 c++ 都是可以写的,不过我真没认识过哪个 d 愿意自己把自己扔那个不酷的框框里:D
对不规则输入的处理也给 python 一个巨大的优势。通常来说,在我现在日常的工作里,所有的数据都是以纯文本但是非格式的形式存储的(raw text, unstructured data)。问题在于,这些文本不可以直接当作各种算法的输入,你需要
分词,分句
提取特征
整理缺失数据
除掉异类(outlier)
在这些时候,python 可谓是神器。这里做的 1-4 都可以直接在 scikit-learn 里面找到对应的工具,而且,即使是要自己写一个定制的算法处理某些特殊需求,也就是一百行代码的事情。
简而言之,对于数据科学面临的挑战,python 可以让你短平快地解决手中的问题,而不是担心太多实现细节。
2)学好统计学习
统计和计算机科学前几十年互相平行着,互相造出了对方造出的一系列工具,算法。但是直到最近人们开始注意到,计算机科学家所谓的机器学习其实就是统计里面的 prediction 而已。因此这两个学科又开始重新融合。
3)学习数据处理
这一步不必独立于 2)来进行。显然,你在读这些书的时候会开始碰到各种算法,而且这里的书里也会提到各种数据。但是这个年代最不值钱的就是数据了(拜托,为什么还要用 80 年代的“加州房价数据”?),值钱的是数据分析过后提供给决策的价值。那么与其纠结在这么悲剧的 80 年代数据集上,为什么不自己搜集一些呢?
4)变成全能工程师(full stack engineer)
在公司环境下,作为一个新入职的新手,你不可能有优待让你在需要写一个数据可视化的时候,找到一个同事来给你做。需要写把数据存到数据库的时候,找另一个同事来给你做。