日产CVTC
1. 从四行程引擎基本原理谈起
现今的汽车都是采用四行程的汽油引擎或是柴油引擎做为动力的来源。所谓的四行程引擎,是指其在运转的每一个循环之中,会经过进气、压缩、爆炸、排气等四个不同的过程,以将燃料内含的化学能,转换为动能,进而推动车辆。如此周而复始,便能车辆不断地前进。
进气行程:活塞自汽缸的上死点往下移动至下死点,同时将进汽门开启,让新鲜的空气和汽油被吸入汽缸内。
压缩行程:活塞自汽缸的下死点往上移动至上死点,在此过程中会将进汽门关闭,以利于活塞对汽缸内的油气进行压缩。
做功行程:当压缩行程到达上死点时,点火系统会以高压电流加在火星塞上,利用尖端放电的原理,发出火花以点燃汽缸内混合了空气与汽油的混合气,当混合气在瞬间燃烧时,就会产生如同爆炸一般的强大力量,使活塞自汽缸的上死点往下移动至下死点,让引擎产生旋转并且输出动力,因此爆炸行程又被称为动力行程。
排气行程:活塞自汽缸的下死点往上移动至上死点,同时将排汽门开启,让已经燃烧过的废气自汽缸内排放出去,以准备进行下一次的循环。
2. 引擎效能的关键─汽门正时与汽门重叠
汽门正时:引擎在运转时,进气门与排气门开启和关闭的时机,称为汽门正时。在基本的理论上,进气门会在进气行程开始的瞬间开启,在进气行程结束之时关闭,排气门的开启与关闭,亦与排气行程是相切合的。
在实际运作之时,由于进气行程之中是利用活塞在下移时产生的吸力,将进气歧管中原本静止的气体吸入汽缸之内。由于吸入的气体需要有加速的过程,同时还需要克服歧管内的摩擦阻力,所以在实际使用时,为了让油气能够更有效率地进入汽缸之内,机械工程师调整了汽门正时,将进气门的开启正时略为提前,同时将排气门关闭的正时延后,利用气体在排放时所造成的吸引力,让进气歧管中的气体提早加速,以增加汽缸的进气量。经过这样调整之后的引擎,便能够有较佳的动力输出与燃烧表现,更符合现代汽车使用上的需要。而这种让进气门与排气门处于同时开启的状况,便是所谓的汽门重叠。
汽门重叠:在传统的引擎系统中,控制汽门正时的方式是以链条、齿形皮带或是齿轮将凸轮轴与引擎的曲轴进行连接,以在运作行程内固定的时机,让汽门能够打开或是关上,以达成控制进气和排气的目的。在这样的设定之下,引擎内汽门重叠的时机,自然也是固定不变的。
然而在实际的运行之中,引擎是以转速高低变化极大的情况在运转,因此在不同的转速之下,为了要达到最好的进气效果,使得汽门重叠的需求是不一样的。引擎在低转速运行之时,由于汽门开启的时间较长,让汽缸比较容易吸进饱满的油气,因此汽门重叠的正时不必太大;而当高转速运行之下,汽门开启时间非常地短,油气并不容易被吸进汽缸,而势必要让汽门开启正时提前,以大量利用排气的牵引效应,来增加进气的效率,其汽门重叠自然变长。因此,在不同使用需求的引擎设定,会因应着高转速使用与低转速使用不同的状况,设定出不同的汽门重叠。
3. CVTC 连续汽门正时控制系统
而一如前面所提,车厂会因为引擎设定为高转速运作或是低转速运作而进行汽门正时的设定,若是将高转速设定的引擎以低转速运作,将面临耗油过多、燃烧不完全的问题;而低转速引擎则会有着高转速动力不足难以发挥的窘境。那么否能够有着一套系统,能够在各个不同的转速之下,均能提供最佳的汽门设定,以让引擎均能保持在最佳的运作效率呢?Nissan的CVTC(Continuous Valve Timing Control)连续可变汽门正时控制系统,便是针对这样的问题而产生的解决方案。
在装载的CVTC系统的车辆上,引擎管理系统会在行驶的过程中,实时将引擎负荷的大小、行驶的路况、油门开启的变化程度以及引擎对加速的反应等等信息,传送到高智能型引擎监控系统(ECU),经由ECU的计算机程序持续不断地进行精密的计算之后,计算机会依据引擎转速去决定进气门在开启与关闭时的最佳时间点,而改变CVTC连续汽门正时控制的开闭位置,并且对凸轮轴的驱动机构进行控制来提升燃烧室的进气效率,并且让废气完全的自汽缸中排出,以在各种转速之下,提供最佳的燃烧效率。
低转速高扭力-创造经济性的新动力价值
CVTC系统在低速时进气门与排气门采取2度的小角度重叠,有利于供给汽缸较为饱满的进气量,而造就了引擎在低转速时即可获得高扭力的动力输出。低转速时的大扭力输出有利于汽车在起步与之后的加速,以及可以让自排变速箱提早换文件,这样的动力性能可以进一步的提升汽车在油耗方面的经济性。
高转速大马力-高燃烧效率创造强大的动力性能
在高速时进气门与排气门的重叠角度可以达到42度,让大量的空气快速的流入汽缸,有效提升汽缸的进气效率,这是把燃料更完全的转换成马力的基本条件,以使引擎具有在高转速时发出强大的动力输出。这样的动力性能让汽车在行驶时,驾驶者只需要轻轻的踩下油门,就可以感受到无与伦比的加速力。
4. CVTC的凸轮轴控制
低转速 → 正时延迟 → 高扭力
CVTC系统便是靠着凸轮轴上的驱动装置进行汽门正时的控制。利用油压驱动系统,CVTC随时改变着凸轮轴与连动齿轮之间的相对角度,进而改变汽门正时。当引擎在低转速时进气门开启的时间会延迟至上死点之后,并且与排气门的开启角度有小度数的重叠。利用废气自燃烧室排放出去时所造成的真空吸力,加快进气歧管内的空气流速,以增加燃烧室的进气效率。而这个开启动作的延迟,在低动力需求的情形之下,可以进一步控制进汽缸的油气量,进而达成省油、完全燃烧的目的。
高转速 → 正时提前 → 高马力
随着引擎转速的提高,CVTC也将进气门的开启时间继续往前推移,到上死点之前的34度,让进气门与排气门的重叠度数达到42度,以提早利用排放废气时所产生的真空吸力,来加快空气流到汽缸的速度,让汽缸在活塞进行吸气行程之前就已经吸入大量的新鲜空气。而进汽门关闭的时间点也会被提前到下死点之后24度,当空气还在快速流入燃烧室的时候就将进气门关闭,如此便可以让燃烧室在进气的过程中吸入更为大量的空气。CVTC让引擎在高转速时借助排气所产生的吸力来增加燃烧室的实际进气量,并且提升汽油在燃烧室内的燃烧效率,以增加引擎在高转速时的马力输出。
5. Nissan CVTC─兼顾燃油经济性与运动性能的引擎科技
Nissan不仅是最早开发VTC(汽门正时控制)系统的汽车制造厂,更是少数具有能力开发连续控制汽门正时变化系统的车厂之一。Nissan的引擎有了CVTC的加持之后,使引擎在低转速时即可产生较大的扭力,并使引擎的扭力变化自低转速到中转速以及高转速的过程中,呈现较为平缓的变化。这种较为平缓的扭力变化,使得引擎在输出较大的扭力与马力之时,除了可以兼顾到燃油的经济性之外,更重要的是在加速与过弯时可以让汽车获得更好的驾控性能,以满足驾驶者在各种不同速度与路况之下的动力需求。
VVT──i发动机
VVT—i.系统是丰田公司的智能可变气门正时系统的英文缩写,最新款的丰田轿车的发动机已普遍安装了VVT—i系统。丰田的VVT—i系统可连续调节气门正时,但不能调节气门升程。它的工作原理是:当发动机由低速向高速转换时,电子计算机就自动地将机油压向进气凸轮轴驱动齿轮内的小涡轮,这样,在压力的作用下,小涡轮就相对于齿轮壳旋转一定的角度,从而使凸轮轴在60度的范围内向前或向后旋转,从而改变进气门开启的时刻,达到连续调节气门正时的目的。
VTEC
VTEC系统全称是可变气门正时和升程电子控制系统,是本田的专有技术,它能随发动机转速、负荷、水温等运行参数的变化,而适当地调整配气正时和气门升程,使发动机在高、低速下均能达到最高效率。+在VTEC系统中,其进气凸轮轴上分别有三个凸轮面,分别顶动摇臂轴上的三个摇臂,当发动机处于低转速或者低负荷时,三个摇臂之间无任何连接,左边和右边的摇臂分别顶动两个进气门,使两者具有不同的正时及升程,以形成挤气作用效果。此时中间的高速摇臂不顶动气门,只是在摇臂轴上做无效的运动。当转速在不断提高时,发动机的各传感器将监测到的负荷、转速、车速以及水温等参数送到电脑中,电脑对这些信息进行分析处理。当达到需要变换为高速模式时,电脑就发出一个信号打开VTEC电磁阀,使压力机油进入摇臂轴内顶动活塞,使三只摇臂连接成一体,使两只气门都按高速模式工作。当发动机转速降低达到气门正时需要再次变换时,电脑再次发出信号,打开VTEC电磁阀压力开头,使压力机油泄出,气门再次回到低速工作模式。
(回应楼上的不懂车的人,老天籁就有了,不过日产不象丰田那样强调这一技术!)
就这个问题,理论技术阐述太多了,简单点,说个大概:
1、CVTC系统便是靠着凸轮轴上的驱动装置进行汽门正时的控制。利用油压驱动系统,CVTC随时改变着凸轮轴与连动齿轮之间的相对角度,进而改变汽门正时。当引擎在低转速时进气门开启的时间会延迟至上死点之后,并且与排气门的开启角度有小度数的重叠。利用废气自燃烧室排放出去时所造成的真空吸力,加快进气歧管内的空气流速,以增加燃烧室的进气效率。而这个开启动作的延迟,在低动力需求的情形之下,可以进一步控制进汽缸的油气量,进而达成省油、完全燃烧的目的。
2、VVT—i.系统是丰田公司的智能可变气门正时系统的英文缩写,最新款的丰田轿车的发动机已普遍安装了VVT—i系统。丰田的VVT—i系统可连续调节气门正时,但不能调节气门升程。它的工作原理是:当发动机由低速向高速转换时,电子计算机就自动地将机油压向进气凸轮轴驱动齿轮内的小涡轮,这样,在压力的作用下,小涡轮就相对于齿轮壳旋转一定的角度,从而使凸轮轴在60度的范围内向前或向后旋转,从而改变进气门开启的时刻,达到连续调节气门正时的目的。
3、VTEC系统全称是可变气门正时和升程电子控制系统,是本田的专有技术,它能随发动机转速、负荷、水温等运行参数的变化,而适当地调整配气正时和气门升程,使发动机在高、低速下均能达到最高效率。+在VTEC系统中,其进气凸轮轴上分别有三个凸轮面,分别顶动摇臂轴上的三个摇臂,当发动机处于低转速或者低负荷时,三个摇臂之间无任何连接,左边和右边的摇臂分别顶动两个进气门,使两者具有不同的正时及升程,以形成挤气作用效果。此时中间的高速摇臂不顶动气门,只是在摇臂轴上做无效的运动。当转速在不断提高时,发动机的各传感器将监测到的负荷、转速、车速以及水温等参数送到电脑中,电脑对这些信息进行分析处理。当达到需要变换为高速模式时,电脑就发出一个信号打开VTEC电磁阀,使压力机油进入摇臂轴内顶动活塞,使三只摇臂连接成一体,使两只气门都按高速模式工作。当发动机转速降低达到气门正时需要再次变换时,电脑再次发出信号,打开VTEC电磁阀压力开头,使压力机油泄出,气门再次回到低速工作模式。 ,i-VTEC多的就是在VTEC引擎上加入VTC=valve overlap control,从名字就可以看出来,它也利用到跟VANOS与VVT-i类似的方式来"连续式"地转动凸轮轴的开与关,所以就达到了所谓的"气门重叠角的控制",这就是进.排气阀门的正时与开启的重叠时间的可变是由油压控制的VTC,使凸轮轴转动些角度(向右,向左),进而提早或延迟去驱动到valve的开或关的时间,这跟VVT-i中的controller有一样的功能!
就这些大概的介绍而言,说白了都是气门,为的就是充分燃烧,丰田的VVT-i是最低级别的!本田的i-VTEC最好!日产的中间行列!如果同排量省油的话,我觉得还是i-VTEC,能够应对高中低速的需求,其次是VVT-i,而日产的CVTC是兼顾动力和经济性,扭距值宽泛,适合城市低速,追求动力的一般都比较耗油!
(1)先有本田的VTEC;(2)、然后才有丰田的VVT-i;(3)、再然后本田的:VTEC + 丰田的VVT-i = 本田的i-VTEC;(4)、于是才有了丰田的:VVT-i + VTEC = 丰田的VVTL-i。
得出结论:i-VTEC = VVTL-i > VVT-i。
所以i-VTEC 的技术要高于VVT-i。
得出第8代雅阁在技术上远远高于凯美瑞。
vvti比较省属于韩国的!