已知函数F(X)=(1⼀a^ x-1+1⼀2)*x^3 求函数定义域 判断奇偶性

2024-12-04 23:41:59
推荐回答(1个)
回答1:

函数f(x)=「1/(2^x-1)+1/2」x^3有意义,只需2^x-1≠0,从而x≠0
故函数f(x)定义域为x≠0;

(2)偶函数

因为 2^x-1≠0 所以 x≠0
且:f(-x)={1/[2^(-x)-1]+1/2}(-x)^3
=-[2^x/(1-2^x)+1/2]x^3
=-[-1+1/(1-2^x)+1/2]x^3
=-[-1/(2^x-1)-1/2]x^3
=f(x)
故由偶函数定义知f(x)为偶函数;