arcsin^2x的原函数

arcsin^2x的原函数
2025-04-15 02:35:02
推荐回答(1个)
回答1:

令t=arcsinx(ⅹ=sint),则y=∫t^2dsint=sint*t^2-∫sintdt^2(分部积分法)=sint*t^2-∫sint*2tdt
=sint*t^2-∫2td(-cost)
=sint*t^2+2(t*cost-∫costdt)
=sint*t^2+2t*cost-2sint
(将t=arcsinx代入)得:
=x*arcsin^2x+2arcsinx*√[(1-x)/2]-2x+C