任务硅酸盐中三氧化二铝的测定

2024-11-29 23:44:38
推荐回答(1个)
回答1:

实训准备

岩石矿物分析

任务分析

一、硅酸盐中铝的测定方法简述

铝的测定方法很多,有重量法、滴定法、光度法、原子吸收分光光度法和等离子体发射光谱法等。重量法的程序繁琐,已很少采用。光度法测定铝的方法很多,出现了许多新的显色剂和新的显色体系,特别是三苯甲烷类和荧光酮类显色剂的显色体系的研究很活跃。原子吸收分光光度法测定铝,由于在空气-乙炔焰中铝易生成难溶化合物,测定的灵敏度极低,而且共存离子的干扰严重,因此需要笑气-乙炔焰,这限制了它的普遍应用。在硅酸盐中铝含量常常较高,多采用滴定分析法。如试样中铝含量很低时,可采用铬天青S比色法。

二、配位滴定法

铝与EDTA等氨羧配位剂能形成稳定的配合物(Al-EDTA的Pk=16.13;Al-CYDTA的Pk=17.6),因此,可用配位滴定法测定铝。但是由于铝与EDTA的配位反应较慢,铝对二甲酚橙、铬黑T等指示剂有封闭作用,故采用EDTA直接滴定法测定铝有一定困难。在发现CYDTA等配位剂之前,滴定铝的方式主要有直接滴定法、返滴定法和置换滴定法。其中,以置换滴定法应用最广。

1.直接滴定法

直接滴定法的原理是:在pH=3左右的制备溶液中,以Cu-PAN为指示剂,在加热条件下用EDTA标准溶液滴定。加热是为了加速铝与EDTA的配位反应,但操作更加麻烦。

滴定剂除 EDTA 外,还常采用 CYDTA。由于 Al -CYDTA 的稳定常数很大,而且CYDTA与铝的配位反应速率比EDTA快,因此,在室温和大量钠盐的存在下,CYDTA能与铝定量反应,并且能允许试液中含有较高量的铬和硅。

无论采用何种滴定方法,酸度是影响EDTA与Al3+进行配位反应的主要因素。铝与EDTA的配位反应将同时受酸效应和水解效应的影响,并且这两种效应的影响结果是相反的。因此,必须控制好适宜的酸度。按理论计算,在pH=3~4时形成配位离子的百分率最高。但是,返滴定法中,在适量的EDTA存在下,溶液的pH可大至4.5,甚至6。然而,酸度如果太低,Al3+将水解而生成动力学上惰性的铝的多核羟基配合物,从而妨碍铝的测定。为此,可采用如下方法解决:

在pH=3左右,加入过量EDTA,加热促使Al3+与EDTA的配位反应进行完全。加热的时间取决于溶液的pH、其他盐类的含量、配位剂的过量情况和溶液的来源等。

在酸性较强的溶液中(pH=0~1 )加入EDTA,然后用六亚甲基四胺或缓冲溶液等弱碱性溶液来调节试液的pH=4~5,而不用氨水、氢氧化钠溶液等强碱性溶液。

在酸性溶液中加入酒石酸,使其与Al3+形成配合物,即可阻止羟基配合物的生成,又不影响Al3+与EDTA的配位反应。

2.返滴定法

在含有铝的酸性溶液中加入过量的EDTA,将溶液煮沸,调节溶液pH=4.5,再加热煮沸使铝与EDTA的配位反应进行完全。然后,选择适宜的指示剂,用其他的金属的盐溶液返滴定过量的EDTA,从而得出铝的含量。用锌盐返滴时,可选用二甲酚橙或双硫腙为指示剂;用铜盐返滴时,可选用PAN或PAR为指示剂;用铅盐返滴时,可选用二甲酚橙作指示剂。返滴定法的选择性较差,需预先分离铁、钛等干扰元素。因此,该法只适用于简单的矿物岩石中铝的测定。

返滴定剂的选择,在理论上,只要其金属离子与EDTA的配合物的稳定性小于铝与EDTA的配合物的稳定性,又不小于配位滴定的最低要求,即可用作返滴定剂,例如Mn2+、La3+、Ce3+等盐。但是,由于Mn与EDTA的配位反应在pH<5.4时不够完全,又无合适的指示剂,因而不适用;同时,La3+、Ce3+等盐的价格较贵,也很少采用。相反,Co、Zn、Cr、Pb、Cu等盐类,虽然其金属离子与EDTA形成的配合物的稳定性比Al与EDTA形成的配合物接近或稍大,但由于Al-EDTA不活泼,不易被它们所取代,故常用作返滴定剂。特别是锌盐和铜盐应用较广。而铅盐,由于其氟化物和硫酸盐的溶解度较小,沉淀的生成将对滴定终点的观察产生一定的影响。

3.氟化铵置换滴定法

氟化铵置换滴定法单独测得的氧化铝是纯氧化铝的含量,不受测定铁、钛滴定误差的影响,结果稳定,一般适于铁高铝低的试样(如铁矿石等)或含有少量有色金属试样。此法选择性较高,目前应用较普遍。

向滴定铁后的溶液中,加入10mL 苦杏仁酸溶液(100g/L)掩蔽 TiO2+,然后加入EDTA标准滴定溶液至过量10~15mL(对铝而言),调节溶液pH=6.0,煮沸数分钟,使铝及其他金属离子和EDTA配合,以半二甲酚橙为指示剂,用乙酸铅标准滴定溶液回滴过量的EDTA。再加入氟化铵溶液使Al3+与F-生成更为稳定的配合物[AlF6]3-,煮沸置换Al-EDTA 配合物中的 EDTA,然后再用铅标准溶液滴定置换出的 EDTA,相当于溶液Al3+的含量。

该方法应注意以下问题:

(1)由于TiO-EDTA配合物也能被F-置换,定量的释放出EDTA,因此若不掩蔽Ti,则所测结果为铝钛合量。为得到纯铝量,预先加入苦杏仁酸掩蔽钛。10mL苦杏仁酸溶液(100g/L)可消除试样中2%~5% 的TiO2的干扰。用苦杏仁酸掩蔽钛的适宜pH为3.5~6。

(2)以半二甲酚橙为指示剂,以铅盐溶液返滴定剩余的EDTA恰至终点,此时溶液中已无游离的EDTA存在,因尚未加入NH4F进行置换,故不必记录铅盐溶液的消耗体积。当第一次用铅盐溶液滴定至终点后,要立即加入氟化铵溶液且加热,进行置换,否则,痕量的钛会与半二甲酚橙指示剂配位形成稳定的橙红色配合物,影响第二次第定。

(3)氟化氨的加入量不宜过多,因大量的氟化物可与Fe3+-EDTA中的Fe3+反应而造成误差。在一般分析中,100mg以内的Al2O3,加1g氟化铵(或10mL100g/L的溶液)可完全满足置换反应的需要。

三、酸碱滴定法综述

在pH=5左右时,Al(Ⅲ)与酒石酸钾钠作用,生成酒石酸钾钠铝配合物,再在中性溶液中加入氟化钾溶液,使铝生成更稳定的氟铝配合物,然后用盐酸标准溶液滴定,即可确定铝的含量。其主要反应如下:

岩石矿物分析

岩石矿物分析

该法可直接单独测定铝,操作较简便,但必须注意以下问题。

(1)本法存在非线性效率,即铝量达到某一数值时,盐酸消耗量与铝不成线性相关。铝量越高,结果越偏低。因此,必须用不同浓度的铝标准溶液来标定盐酸标准溶液的浓度,最好做出校正曲线,并使待测样品的铝量处于曲线的直线部分。

(2)

和铵盐对中和反应起缓冲作用,应避免引入。氟因严重影响铝与酒石酸形成配合物的效力,对测定有干扰。小于10mg的Fe(Ⅲ)不干扰测定。凡是能与酒石酸及氟形成稳定配合物的离子均有正干扰,例如,Th、Ti、U(Ⅳ)、Ba 和Cr 的量各为2mg时,将分别给出相当于0.5mg、0.5mg、0.35mg、0.36mg、0.05mg Al2O3的正误差。

四、铬天青S比色法

铝与三苯甲烷类显色剂普遍存在显色反应,且大多在pH=3.5~6.0的酸度下进行显色。在pH=4.5~5.4的条件下,铝与铬天青S(简写为CAS)进行显色反应生成1:2的有色配合物,且反应迅速完成,可稳定约1h。在pH=5.4时,有色配合物的最大吸收波长为545nm,其摩尔吸光系数为4×104L/(mol·cm)。该体系可用于测定试样中低含量的铝。

该方法应注意以下问题:

(1)在Al-CAS法中,引入阳离子或非离子表面活性剂,生成 Al -CAS -CPB 或Al-CAS-CTMAB等三元配合物,其灵敏度和稳定性都显著提高。例如,Al-CAS -CTMAB的显色条件为pH=5.5~6.2,λmax=620nm,ε620=1.3×105L/(mol·cm),配合物迅速生成,能稳定4h以上。

(2)Be(Ⅱ)、Cu(Ⅱ)、Th(Ⅳ)、Zr(Ⅳ)、Ni(Ⅱ)、Zn、Mn(Ⅱ)、Sn(Ⅳ)、V(Ⅴ)、Mo(Ⅵ)和U存在时干扰测定。F的存在,与Al生成配合物而产生严重的负误差,必须事先除去。Fe(Ⅲ)的干扰可加抗坏血酸消除,但抗坏血酸的用量不能过多,以加入2mL 抗坏血酸溶液(1%)为宜,否则会破坏Al-CAS配合物。少量Ti(Ⅳ)、Mo(Ⅳ)的干扰可加入磷酸盐掩蔽,2mL的磷酸二氢钠溶液(0.5%)可掩蔽100μg的SiO2。低于500μg的Cr(Ⅲ)、100μg的V2O5不干扰测定。

技能训练

一、直接法检测三氧化二铝

(一)检测流程

岩石矿物分析

(二)试剂配制

(1)氨水溶液(1+2)。

(2)盐酸溶液(1+2)。

(3)缓冲溶液(pH=3):将3.2g无水乙酸钠溶于水中,加120mL冰乙酸,用水稀释至1L,摇匀。

(4)PAN指示剂溶液:将0.2g 1-(2-吡啶偶氮)-2 -萘酚溶于100mL乙醇(95%,体积分数)中。

(5)EDTA-铜溶液:用浓度各为0.015mol/L的EDTA标准溶液和硫酸铜标准溶液等体积混合而成。

(6)溴酚蓝指示液:将0.2g溴酚蓝溶于100mL乙醇(1+4)中。

(7)EDTA标准溶液:C(EDTA)=0.015mol/L。

(三)操作步骤

1.EDTA标准溶液标定

标定方法见配位滴定法检测三氧化二铁:

TEDTA/Al2O3= C(EDTA)×50.98(mg/mL)

2.测定

将测定完铁的溶液用水稀释至约200mL,加1~2滴溴酚蓝指示剂溶液(2g/L),滴加氨水(1 +2)至溶液出现蓝紫色,再滴加盐酸(1 +2)至黄色,加入15mL pH=3的缓冲溶液,加热至微沸并保持1min,加入10滴EDTA-铜溶液及2~3滴PAN指示剂溶液(2g/L),用EDTA标准滴定溶液滴定至红色消失,继续煮沸,滴定,直至溶液经煮沸后红色不再出现并呈稳定的黄色为止。

3.计算

Al2O3的质量分数按下式计算:

岩石矿物分析

式中:w(Al2O3)为Al2O3的质量分数,%;T为EDTA标准滴定溶液对Al2O3的滴定度,mg/mL;V为分取试样溶液消耗EDTA标准滴定溶液的体积,mL;m为称取试料的质量,g。

实验指南与安全提示

用EDTA直接滴定铝,不受TiO2+和Mn2+的干扰。因为在pH=3的条件下,Mn2+基本不与EDTA配位。TiO2+水解为TiO(OH)2沉淀,所得结果为纯铝含量。因此,若已知试样中锰含量高时,应采用直接滴定法。

该法最适宜的pH范围为2.5~3.5之间。若溶液的pH<2.5,Al3+与EDTA的配位能力降低;当pH>3.5时,Al3+水解作用增强,均会引起铝的测定结果偏低。但如果Al3+的浓度太高,即使在pH=3的条件下,其水解倾向也会很大,所以,含铝和钛高的试样不应采用直接滴定法。

TiO2+在pH=3、煮沸的条件下能水解生成TiO(OH)2沉淀。为使TiO2+充分水解,在调整溶液pH=3之后,应先煮沸1~2min,再加入EDTA-Cu和PAN指示剂。

PAN指示剂的用量,一般在200mL溶液中加入2~3滴为宜。如指示剂加入太多,溶液颜色较深。不利于终点的观察。

EDTA直接滴定法测定铝,应进行空白试验。

技能训练

二、返滴定法检测三氧化二铝

(一)检测流程

岩石矿物分析

(二)试剂配制

(1)氨水溶液(1+2)。

(2)盐酸溶液(1+2)。

(3)EDTA 标准溶液(0.015mol/L):称取 1.4g EDTA 加水微热溶解,定容250mL。

(4)PAN指示剂(0.2%):称取0.2g指示剂溶于100mL乙醇中。

(5)HAc-NaAc缓冲溶液(pH=4.2):称取13.3g三水合乙酸钠溶于水中,加12.5mL冰醋酸,用水稀释至250mL。

(6)CuSO4标准溶液(约0.015mol/L):称取1.0g CuSO4·5H2O 溶于水中,加1滴H2SO4(1+1),用水稀释至250mL。

(三)操作步骤

1.标定

(1)EDTA标定。标定方法见配位滴定法检测三氧化二铁。

(2)EDTA标准滴定溶液与CuSO4标准滴定溶液的体积比的标定。用移液管准确吸取20mL EDTA标准溶液,置于锥形瓶中,加水稀至100mL,加10mL HAc -NaAc缓冲溶液,加热至沸,取下稍冷,加4~6滴PAN指示剂,用CuSO4标准溶液滴定至亮紫色。计算CuSO4溶液的准确浓度。

EDTA标准滴定溶液与CuSO4标准滴定溶液的体积比按下式计算:

岩石矿物分析

式中:K为每毫升CuSO4标准滴定溶液相当于EDTA标准滴定溶液的体积比;V1为加入 EDTA 标准滴定溶液的体积,mL;V2为滴定消耗 CuSO4标准滴定溶液的体积,mL。

2.测定

在滴定Fe3+后的溶液中,用移液管准确加入EDTA标准溶液20mL,摇匀。用水稀释至150~200mL。将溶液加热至70~80℃后,加数滴氨水(1+1)使溶液pH在3.0~3.5 之间,然后再加入10mL HAc -NaAc 缓冲溶液,煮沸,取下稍冷至90℃左右,加入4~6滴0.2% PAN指示剂,以CuSO4标准溶液滴定,溶液由黄色变为紫色即为终点。

3.计算

Al2O3的质量分数按下式计算:

岩石矿物分析

式中:w(Al2O3)为Al2O3的质量分数,%;T为EDTA标准滴定溶液对Al2O3的滴定度,mg/mL;V1为加入EDTA标准滴定溶液的体积,mL;V2为分取试样溶液消耗CuSO4标准滴定溶液的体积,mL;m 为称取试料的质量,g;0.64 为 TiO2对Al2O3的换算系数;w(TiO2)为TiO2的质量分数,%。

实验指南与安全提示

铜盐返滴定法选择性较差,主要是铁、钛的干扰,故不适于复杂的硅酸盐分析。溶液中的TiO2+可完全与EDTA配位,所测定的结果为铝钛合量。一般工厂用铝钛合量表示A12O3的含量。若求纯的A12O3含量,应采用以下方法扣除TiO2的含量:①在返滴定完铝+钛后,加入苦杏仁酸(学名:β-羟基乙酸)溶液,使其夺取TiY2-中的TiO2+,而置换出等物质的量的EDTA,再用CuSO4标准滴定溶液返滴定,即可测得钛含量;②另行测定钛含量;③加入钽试剂、磷酸盐、乳酸或酒石酸等试剂掩蔽钛。

在用EDTA滴定完Fe3+的溶液中加入过量的EDTA之后,应将溶液加热到70~80℃再调整pH 为3.0~3.5 后,加入pH =4.3 的缓冲溶液。这样可以使溶液中的少量TiO2+和大部分Al3+与EDTA配位完全,并防止其水解。

EDTA(0.015mol/L)加入量一般控制在与Al和Ti配位后,剩余10~15mL,可通过预返滴定或将其余主要成分测定后估算。控制EDTA过剩量的目的是:①使Al、Ti与EDTA配位反应完全;②滴定终点的颜色与过剩EDTA的量和所加PAN指示剂的量有关。正常终点的颜色应符合规定操作浓度比(蓝色的CuY2-和红色的 Cu2+-PAN),即亮紫色。若EDTA剩余太多,则CuY2-浓度高,终点可能成为蓝紫色甚至蓝色;若EDTA剩余太少,则Cu2+-PAN 配合物的红色占优势,终点可能为红色。因此,应控制终点颜色一致,以免使滴定终点难以掌握。

锰的干扰。Mn2+与EDTA定量配位最低pH=5.2,对于配位滴定Al3+的干扰程度随溶液的pH和Mn2+浓度的增高而增强。在pH=4左右,溶液中共存Mn2+约一半能与EDTA配位。如果MnO含量低于0.5mg,其影响可以忽略不计;若达到1mg以上,不仅是Al2O3测定结果明显偏高,而且是滴定终点拖长。一般对于MnO含量高于0.5%的试样,采用直接滴定法或氟化铵置换EDTA配位滴定法测定。

氟的干扰。F-能与Al3+逐级形成[AlF]2+,[AlF2,...,[AlF63-等稳定的配合物,将干扰Al3+与EDTA的配位。如溶液中F-的含量高于2mg,Al3+的测定结果将明显偏低,且终点变化不敏锐。一般对于氟含量高于5% 的试样,需采取措施消除氟的干扰。

技能训练

三、置换法检测三氧化二铝

(一)检测流程

岩石矿物分析

(二)试剂配制

(1)氟化钾溶液(100g/L):贮于塑料瓶中。

(2)EDTA标准溶液(0.015mol/L):1.4g用水溶解后稀释至250mL。

(3)二甲酚橙指示剂(0.2%):水溶液。

(4)HAc-NaAc缓冲溶液(pH=5.5):200g乙酸钠(NaAc·3H2O)溶于水中,加6mL冰乙酸,用水稀释至1 L。

(5)乙酸锌标准溶液(0.015mol/L):称取0.9g Zn(Ac)2·2H2O溶于水中,加冰乙酸(1+1)调整pH=5.5,用水稀释至刻度250mL。

(6)铝标准溶液(1.000mg/mL Al2O3):准确称取0.5293g高纯金属铝片(预先用盐酸(1+1)洗净表面,然后用水和无水乙醇洗净,风干后备用)置于烧杯中,加20mL盐酸(1+1)溶解,移入至1000mL容量瓶中,冷却至室温,用水稀释至刻度。

(三)操作步骤

1.乙酸锌对三氧化二铝的滴定度测定

准确移取10.00mL铝标准溶液于锥形瓶中,加入20mL EDTA(0.015mol/L)。在电热板上加热至80~90℃取下,加1 滴二甲酚橙指示剂,加NH3· H2O(1∶1)至溶液由黄刚变紫红色,再用盐酸(1+1)调回恰变为黄色,加入pH=5.5缓冲溶液10mL。加热煮沸并保持3min,取下冷却,补加1滴二甲酚橙指示剂,用乙酸锌标准溶液滴定至溶液刚变橙红色。该读数不记。然后加入10mL氟化钾溶液,加热煮沸保持3min,取下冷却,补加2滴二甲酚橙。用醋酸锌标准溶液滴至橙红色为终点,记下读数V,则T值:

2.硅酸盐中三氧化二铝的测定

准确移取25mL分离二氧化硅后的滤液置于250mL锥形瓶中,加入20mL EDTA(0.015mol/L),其余步骤如滴定度。

3.结果计算

岩石矿物分析

式中:w(Al2O3)为Al2O3的质量分数,%;T为乙酸锌标准滴定溶液对Al2O3的滴定度,mg/mL;V为分取试样溶液消耗EDTA标准滴定溶液的体积,mL;m为称取试料的质量,g;0.64为TiO2对Al2O3的换算系数;w(TiO2)为TiO2的质量分数,%。

实验指南与安全提示

氟化铵置换滴定法一般适于铁高铝低的试样(如铁矿石等)或含有少量有色金属试样。此法选择性较高,目前应用较普遍,在标准GB/T6730-1986铁矿石化学分析方法中被列为代用法。

其余注意事项参照任务分析方法简述。