微分方程的通解和特解有什么区别?

2024-12-01 14:14:36
推荐回答(3个)
回答1:

一、性质不同。对于一个微分方程而言,其解往往不止一个,而是有一组,可以表示这一组中所有解的统一形式,称为通解。这个方程的所有解当中的某一个。

二、形式不同。通解中含有任意常数。特解中不含有任意常数,是已知数。

三、求法不同。通解是表示了全部解的解,特解就是固定的一个解,通解求出来,把参数解出来就是特解。

扩展资料:

通解的求法:

求微分方程通解的方法有很多种,如:特征线法,分离变量法及特殊函数法等等。而对于非齐次方程而言,任一个非齐次方程的特解加上一个齐次方程的通解,就可以得到非齐次方程的通解。

非齐次线性方程组的通解=齐次线性方程组的通解+非齐次线性方程组的一个特解(η=ζ+η*)。

二阶常系数齐次线性微分方程:方程"'"+PY"+9y=0称为二阶常系数齐次线性微分方程,其中P、q均为常数。

如果小2是二阶常系数齐次线性微分方程的两个线性无关解,那么y=Cry1+C2y2 就是它的通解。能否适当选取r, 使y=e"满足二阶常系数齐次线性微分方程,为此将y=e"代入方程"'"+PY"+9y=0。

得(r "+pr+q9)e"=0。由此可见,只要r满足代数方程r2+pr+g=0,函数y=e"*就是微分方程的解。

回答2:

通解是这个方程所有解的集合,也叫作解集
特解是这个方程的所有解当中的某一个,也就是解集中的某一个元素

回答3:

对应的方程不一样,