求不定积分 dx⼀(x(1+x^2)^1⼀2)

2025-04-01 09:28:40
推荐回答(1个)
回答1:

令x=tant,
则dx=sec²tdt
∫dx/[x√(1+x²)]
=∫sec²t/(tantsect)
dt
=∫sect/tant
dt
=∫1/sint
dt
=∫csct
dx
=∫csct(csct-cott)/(csct-cott)dt
=∫(csc²t-csctcott)/(csct-cott)dx
=∫d(csct-cott)/(csct-cott)
=ln|csct-cott|+C
=ln|[√(1+x²)-1]/x|+C
=ln[√(1+x²)-1]-ln|x|+C
C为任意常数
============
你的答案和我的答案其实是一样的
-1/2lnl(1+(1+x^2)^1/2)/(1-(1+x^2)^1/2)l+C
=(1/2)
ln[l(1+(1+x^2)^1/2)/(1-(1+x^2)^1/2)l^(-1)]+C.......利用对数性质,把负号消掉
=(1/2)lnl(1-(1+x^2)^1/2)/(1+(1+x^2)^1/2)l+C
=(1/2)ln|(1-(1+x^2)^1/2)²/x²|+C.......对数真数分母有理化,分子分母同时乘以1-(1+x^2)^1/2
=ln|((1+x^2)^1/2-1)/x|+C.......利用对数性质,把1/2化进真数
=ln[√(1+x²)-1]-ln|x|
+C
.......对数运算性质