解答:
裂项求和的方法。
等差数列求和公式 :1+2+3+.....+ n=n(n+1)/2
1÷(1+2)+1÷(1+2+3)+1÷(1+2+3+4)+1÷(1+2+3+4+5)…+1÷(1+2+3+…+19)
=1/3+1/6+1/10+1/15+.....+1/190
=2/6+2/12+2/20+2/30+.....+2/380
=2*(1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+......+1/19-1/20)
=2*(1/2-1/20)
=1-1/10
=9/10。
解:1÷(1+2)+1÷(1+2+3)+1÷(1+2+3+4)+1÷(1+2+3+4+5)…+1÷(1+2+3+…+19)
=1/3+1/6+1/10+1/15+..........+1/190
=(1/3+1/6+1/10+1/15+..........+1/190)×1/2×2
=(1/6+1/12++1/20+1/30+........+1/380)×2
=(1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+.......+1/19-1/20)×2
=(1/2-1/20)×2
=9/20×2
=9/10
an=2/((n+2)(n+1))=2/(n+1)-2/(n+2)
所以
1/3+1/6+1/10+1/15+1/21+......
=(2/2-2/3)+(2/3-2/4)+(2/4-2/5)+......+(2/19-2/20)
=2/2-2/20
=9/10