方法一,直接从这个结果出发:
S2n-Sn>=1/2
对于任意n成立
则把n变成2n
S4n-S2n>=1/2成立
以次类推S8n-S4n>=1/2
S 下标2^k n -S下标2^(k-1)n >=1/2
把这些统统相加
S 下标2^k n >=k/2
再令k->无穷,即2^k n->无穷,则S无穷=无穷
方法二,利用极限收敛定义:
若一个数列极限存在,则其必为柯西数列
柯西数列An表示对于任意m>n
有|Am-An|->0,当m,n->无穷
此处显然永远有m=2n时,|Sm-Sn|>=1/2与Cauchy数列定义矛盾,所以发散
把n换成2n,那S(4n)-S(2n)>1/2。那么S(2^k*n)-S(n)>k/2所以发散
n趋于无穷时 s2n >sn直接🉑判定发散了