怎么判断微分方程是单根还是重根

2024-12-05 17:50:18
推荐回答(4个)
回答1:

判断方法如下:

二阶微分方程可写成y''+py'+q=Q(n)*e^(rx),其中Q(n)是x的n次多项式.其特征方程为z^2+pz+q=0,特征根为z1,z2.

若二者都不是r,则r不是特征方程的根,在求特解时把特解设为P(n)*e^(rx),将其代入原微分方程,比较系数,即可确定P(n);

若r=z1且不等于z2,则称r是特征方程的单根,此时特解设为xP(n-1)*e^(rx),将其代入原微分方程,比较系数,即可确定P(n-1);

若r=z1=z2,则称r是特征方程的二重根,特解设为x^2*P(n-2)*e^(rx),将其代入原微分方程,比较系数,即可确定P(n-2)。

拓展资料:

微分方程指含有未知函数及其导数的关系式。解微分方程就是找出未知函数。

微分方程是伴随着微积分学一起发展起来的。微积分学的奠基人Newton和Leibniz的著作中都处理过与微分方程有关的问题。微分方程的应用十分广泛,可以解决许多与导数有关的问题。

物理中许多涉及变力的运动学、动力学问题,如空气的阻力为速度函数的落体运动等问题,很多可以用微分方程求解。此外,微分方程在化学、工程学、经济学和人口统计等领域都有应用。

参考资料:微分方程-百度百科

回答2:

楼主说的是二阶常系数线性非齐次微分方程吧?解出它对应的其次方程的特征方程就行了,这个特征方程是肯定有解的,如果无解,那么方程无解。如果两根相同且e的ax次方中的a和根相同,就说是二重根,如果两根互异,a个其中一根相同,就说是单根。

回答3:

如果两根相同且e的ax次方中的a和根相同,就说是二重根,如果两根互异,a个其中一根相同,就说是单根

回答4:

单根:有且只有一个解;重根:有两个解,且这两个解相等。

数学上,n次单位根是n次幂为1的复数。它们位于复平面的单位圆上,构成正n边形的顶点,其中一个顶点是1。

对代数方程,即多项式方程,方程f(x) = 0有根x = a则说明f(x)有因子(x - a),从而可做多项式除法P(x) = f(x) / (x-a)结果仍是多项式。若P(x) = 0仍以x = a为根,则x= a是方程的重根。或令f1(x)为f(x)的导数,若f1(x) = 0也以x =a为根,则也能说明x= a是方程f(x)=0的重根。