在相当长的时间里,人们研究的固体主要是晶体。早在18世纪R.阿维对晶体外部的几何规则性就有一定的认识。后来,A.布喇菲在1850年导出14种点阵。E.费奥多罗夫在1890年和A.熊夫利在1891年以及W.巴洛在1895年各自建立了晶体对称性的群理论。这为固体的理论发展找到基本的数学工具,影响深远(见晶体的对称性)。1912年von.劳厄等发现X射线通过晶体的衍射现象,证实了晶体内部原子周期性排列的结构。加上后来布喇格父子1913年的工作,建立了晶体结构分析的基础。对于磁有序结构的晶体,增加了自旋磁矩有序排列的对称性,直到50年代Α.舒布尼科夫才建立了磁有序晶体的对称群理论。第二次世界大战后发展的中子衍射技术,是磁性晶体结构分析的重要手段。70年代出现了高分辨电子显微镜点阵成像技术,在致力于晶体结构的观察方面有所进步。60年代起,人们开始研究在超高真空条件下晶体解理后表面的原子结构。20年代末发现的低能电子衍射技术在60年代经过改善成为研究晶体表面的有力工具。今天发展的扫描隧道显微镜,可以相当高的分辨率探测表面的原子结构。 晶体的结构以及它的物理、化学性质同晶体结合的基本形式有密切关系。通常晶体结合的基本形式可分成:离子键合、金属键合、共价键合、分子键合(范德瓦耳斯键合)和氢键合。实际晶体可能不单纯是某一种结合,例如石墨就兼有共价键合、金属键合和分子键合(晶体的键合)。根据X射线衍射强度分析和晶体的物理、化学性质、或者依据晶体价电子的局域密度分布的自洽理论计算,人们可以准确地判定该晶体具有何种键合形式。 晶体的各种物性(如弹性、介电性、输运性质等)一般是各向异性的,用张量表示。每个物性张量的独立元素的数目依赖于晶体的对称性。同一晶体的不同物性张量之间的关系则由热力学来确定。实际上,固体的宏观物性是在特定的原子结构和结合形式的条件下其内部微观过程在外场中的响应(见晶体物理性能的对称性)。